File Download
Supplementary
-
Citations:
- Appears in Collections:
postgraduate thesis: A study of biological role of reactive oxygen species in cellular response in stress
Title | A study of biological role of reactive oxygen species in cellular response in stress |
---|---|
Authors | |
Issue Date | 2012 |
Publisher | The University of Hong Kong (Pokfulam, Hong Kong) |
Citation | Lam, D. [林勁行]. (2012). A study of biological role of reactive oxygen species in cellular response in stress. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4786960 |
Abstract | When proteins are unable to fold properly in the endoplasmic reticulum (ER), the
resultant formation of misfolded proteins causes stress of the ER. Cells with ER stress
often have a higher abundance of reactive oxygen species (ROS). Previous studies
suggest that ROS could aggravate ER stress by further disrupting the ER protein
folding process. More recent studies suggest that the unfolded protein response
signaling pathways activated by ER stress could lead to the production of ROS. Such
studies lead to the hypothesis that ER stress could be promoted by ROS, and vice
versa. The aim of the present study is to test the above hypothesis by studying how
ROS could be generated in ER-stressed cells. This is followed by investigating if ROS
could increase or decrease the level of ER stress in cells. Finally, the extent of ER
stress induced cell death in the presence and absence of ROS is assessed.
The treatment of HeLa cells with tunicamycin (Tm), a common ER-stress
inducing agent, resulted in the elevation of intracellular ROS that could be detected
with the ROS-reactive probe dichlorodihydrofluorescein (DCF), but not
dihydroethidium which is relatively specific towards superoxide anion. The
Tm-induced elevation of ROS could be prevented by co-incubation of cells with thiol
reductants such as dithiothreitol and N-acetylcysteine but not with the free radical
scavenger ascorbate. The tunicamycin-induced elevation of ROS level could also be
prevented by the over-expression of catalase in HeLa. These data is consistent with
the idea that hydrogen peroxide is a major form of ROS produced in Tm-treated cells.
In addition to elevation of ROS level, HeLa cells treated with tunicamycin also
resulted in the phosphorylation of PERK and eIF2α, and the splicing of XBP-1. In the
presence of cycloheximide to inhibit protein synthesis so as to deplete protein
substrates for folding in the ER, tunicamycin-induced ER stress was greatly
minimized as was evident by the absence of both the phosphorylation of PERK and
splicing of XBP-1. However, the phosphorylation of eIF2α and elevation of
DCF-detectable ROS remained unaffected. The cycloheximde-resistant
phosphorylation of eIF2α could be prevented when cells were co-treated with thiol
reductants, or upon the over-expression of catalase. These data suggest that the
production of ROS in Tm-treated cells does not require the presence of ER stress as a
prerequisite. Furthermore, the ROS so produced could induce phosphorylation of
eIF2α without the need to cause ER stress in the first place.
The quenching of ROS through the use of thiol reductants, or the over-expression
of catalase, had no effect on inhibition of protein synthesis in cells treated with
tunicamycin. However, the extent of cell death was significantly increased. The data
obtained in this study is not consistent with the idea that ROS is a downstream
product of ER stress, capable of inducing more ER-stress by a feedback mechanism.
Therefore, a mutually enhancing effect between ER stress and ROS may not exist.
The ROS found in stressed cells may serve to extend cellular survival under the
condition of continuous stress. |
Degree | Doctor of Philosophy |
Subject | Endoplasmic reticulum. Protein folding. Active oxygen. Stress (Physiology) |
Dept/Program | Biochemistry |
Persistent Identifier | http://hdl.handle.net/10722/161520 |
HKU Library Item ID | b4786960 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lam, Dennis | - |
dc.contributor.author | 林勁行 | - |
dc.date.issued | 2012 | - |
dc.identifier.citation | Lam, D. [林勁行]. (2012). A study of biological role of reactive oxygen species in cellular response in stress. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4786960 | - |
dc.identifier.uri | http://hdl.handle.net/10722/161520 | - |
dc.description.abstract | When proteins are unable to fold properly in the endoplasmic reticulum (ER), the resultant formation of misfolded proteins causes stress of the ER. Cells with ER stress often have a higher abundance of reactive oxygen species (ROS). Previous studies suggest that ROS could aggravate ER stress by further disrupting the ER protein folding process. More recent studies suggest that the unfolded protein response signaling pathways activated by ER stress could lead to the production of ROS. Such studies lead to the hypothesis that ER stress could be promoted by ROS, and vice versa. The aim of the present study is to test the above hypothesis by studying how ROS could be generated in ER-stressed cells. This is followed by investigating if ROS could increase or decrease the level of ER stress in cells. Finally, the extent of ER stress induced cell death in the presence and absence of ROS is assessed. The treatment of HeLa cells with tunicamycin (Tm), a common ER-stress inducing agent, resulted in the elevation of intracellular ROS that could be detected with the ROS-reactive probe dichlorodihydrofluorescein (DCF), but not dihydroethidium which is relatively specific towards superoxide anion. The Tm-induced elevation of ROS could be prevented by co-incubation of cells with thiol reductants such as dithiothreitol and N-acetylcysteine but not with the free radical scavenger ascorbate. The tunicamycin-induced elevation of ROS level could also be prevented by the over-expression of catalase in HeLa. These data is consistent with the idea that hydrogen peroxide is a major form of ROS produced in Tm-treated cells. In addition to elevation of ROS level, HeLa cells treated with tunicamycin also resulted in the phosphorylation of PERK and eIF2α, and the splicing of XBP-1. In the presence of cycloheximide to inhibit protein synthesis so as to deplete protein substrates for folding in the ER, tunicamycin-induced ER stress was greatly minimized as was evident by the absence of both the phosphorylation of PERK and splicing of XBP-1. However, the phosphorylation of eIF2α and elevation of DCF-detectable ROS remained unaffected. The cycloheximde-resistant phosphorylation of eIF2α could be prevented when cells were co-treated with thiol reductants, or upon the over-expression of catalase. These data suggest that the production of ROS in Tm-treated cells does not require the presence of ER stress as a prerequisite. Furthermore, the ROS so produced could induce phosphorylation of eIF2α without the need to cause ER stress in the first place. The quenching of ROS through the use of thiol reductants, or the over-expression of catalase, had no effect on inhibition of protein synthesis in cells treated with tunicamycin. However, the extent of cell death was significantly increased. The data obtained in this study is not consistent with the idea that ROS is a downstream product of ER stress, capable of inducing more ER-stress by a feedback mechanism. Therefore, a mutually enhancing effect between ER stress and ROS may not exist. The ROS found in stressed cells may serve to extend cellular survival under the condition of continuous stress. | - |
dc.language | eng | - |
dc.publisher | The University of Hong Kong (Pokfulam, Hong Kong) | - |
dc.relation.ispartof | HKU Theses Online (HKUTO) | - |
dc.rights | The author retains all proprietary rights, (such as patent rights) and the right to use in future works. | - |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.source.uri | http://hub.hku.hk/bib/B47869604 | - |
dc.subject.lcsh | Endoplasmic reticulum. | - |
dc.subject.lcsh | Protein folding. | - |
dc.subject.lcsh | Active oxygen. | - |
dc.subject.lcsh | Stress (Physiology) | - |
dc.title | A study of biological role of reactive oxygen species in cellular response in stress | - |
dc.type | PG_Thesis | - |
dc.identifier.hkul | b4786960 | - |
dc.description.thesisname | Doctor of Philosophy | - |
dc.description.thesislevel | Doctoral | - |
dc.description.thesisdiscipline | Biochemistry | - |
dc.description.nature | published_or_final_version | - |
dc.identifier.doi | 10.5353/th_b4786960 | - |
dc.date.hkucongregation | 2012 | - |
dc.identifier.mmsid | 991033515949703414 | - |