File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Holey silicon as an efficient thermoelectric material

TitleHoley silicon as an efficient thermoelectric material
Authors
KeywordsNanostructure
Necking
Silicon
Thermal Conductivity
Thermoelectric
Issue Date2010
PublisherAmerican Chemical Society. The Journal's web site is located at http://pubs.acs.org/nanolett
Citation
Nano Letters, 2010, v. 10 n. 10, p. 4279-4283 How to Cite?
AbstractThis work investigated the thermoelectric properties of thin silicon membranes that have been decorated with high density of nanoscopic holes. These "holey silicon" (HS) structures were fabricated by either nanosphere or block-copolymer lithography, both of which are scalable for practical device application. By reducing the pitch of the hexagonal holey pattern down to 55 nm with 35% porosity, the thermal conductivity of HS is consistently reduced by 2 orders of magnitude and approaches the amorphous limit. With a ZT value of ∼0.4 at room temperature, the thermoelectric performance of HS is comparable with the best value recorded in silicon nanowire system. © 2010 American Chemical Society.
Persistent Identifierhttp://hdl.handle.net/10722/169604
ISSN
2021 Impact Factor: 12.262
2020 SCImago Journal Rankings: 4.853
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorTang, Jen_US
dc.contributor.authorWang, HTen_US
dc.contributor.authorLee, DHen_US
dc.contributor.authorFardy, Men_US
dc.contributor.authorHuo, Zen_US
dc.contributor.authorRussell, TPen_US
dc.contributor.authorYang, Pen_US
dc.date.accessioned2012-10-25T04:53:37Z-
dc.date.available2012-10-25T04:53:37Z-
dc.date.issued2010en_US
dc.identifier.citationNano Letters, 2010, v. 10 n. 10, p. 4279-4283en_US
dc.identifier.issn1530-6984en_US
dc.identifier.urihttp://hdl.handle.net/10722/169604-
dc.description.abstractThis work investigated the thermoelectric properties of thin silicon membranes that have been decorated with high density of nanoscopic holes. These "holey silicon" (HS) structures were fabricated by either nanosphere or block-copolymer lithography, both of which are scalable for practical device application. By reducing the pitch of the hexagonal holey pattern down to 55 nm with 35% porosity, the thermal conductivity of HS is consistently reduced by 2 orders of magnitude and approaches the amorphous limit. With a ZT value of ∼0.4 at room temperature, the thermoelectric performance of HS is comparable with the best value recorded in silicon nanowire system. © 2010 American Chemical Society.en_US
dc.languageengen_US
dc.publisherAmerican Chemical Society. The Journal's web site is located at http://pubs.acs.org/nanoletten_US
dc.relation.ispartofNano Lettersen_US
dc.subjectNanostructureen_US
dc.subjectNeckingen_US
dc.subjectSiliconen_US
dc.subjectThermal Conductivityen_US
dc.subjectThermoelectricen_US
dc.titleHoley silicon as an efficient thermoelectric materialen_US
dc.typeArticleen_US
dc.identifier.emailTang, J: jinyao@hku.hken_US
dc.identifier.authorityTang, J=rp01677en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1021/nl102931zen_US
dc.identifier.pmid20839780-
dc.identifier.scopuseid_2-s2.0-77958033784en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-77958033784&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume10en_US
dc.identifier.issue10en_US
dc.identifier.spage4279en_US
dc.identifier.epage4283en_US
dc.identifier.isiWOS:000282727600080-
dc.publisher.placeUnited Statesen_US
dc.identifier.scopusauthoridTang, J=12791614900en_US
dc.identifier.scopusauthoridWang, HT=36674201200en_US
dc.identifier.scopusauthoridLee, DH=34870035100en_US
dc.identifier.scopusauthoridFardy, M=22933945300en_US
dc.identifier.scopusauthoridHuo, Z=8953609200en_US
dc.identifier.scopusauthoridRussell, TP=7202045987en_US
dc.identifier.scopusauthoridYang, P=7403931988en_US
dc.identifier.issnl1530-6984-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats