File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Residual strength of slip zones of large landslides in the Three Gorges area, China

TitleResidual strength of slip zones of large landslides in the Three Gorges area, China
Authors
KeywordsLandslide slip zones
Fine-grained soils with substantial amount of coarse-grained particles
Residual strength
Index properties
The Three Gorges area
Issue Date2007
PublisherElsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/enggeo
Citation
Engineering Geology, 2007, v. 93 n. 3-4, p. 82-98 How to Cite?
AbstractSlip zones of the large landslides in the Three Gorges area are commonly composed of fine-grained soils with substantial amount of coarse-grained particles, particularly gravel-sized particles. In this study, residual strength of the soils from slip zones of these landslides were examined in relation to their index properties based on a survey of 170 landslides. It was found that laboratory-determined residual friction angle using gravel-free fraction of the disturbed soils from the slip zones was closely related to clay content, liquid limit and plasticity index. On the other hand, in-situ residual friction angle of these soils (i.e. including gravel fraction) showed very weak correlations with clay content and Atterberg limits, but was largely dependent on gravel and fines (clays + silts) contents, increasing with gravels and decreasing with fines, and displayed strong linear correlation with the ratio of gravel to fines contents. These observations indicate that among the index properties, clay content and Atterberg limits can be used to estimate residual strength of the soils finer than 2 mm, but they are not appropriate evaluate the residual strength of the soils containing considerable amount of gravel-sized particles. For the latter, particle size distribution (particularly the ratio of gravel to fines contents) appears to be a useful index. Additionally, it was found that there was no identifiable correlation between relative abundance of individual major clay minerals and residual friction angles of both gravel-free fraction of disturbed and in-situ soils, suggesting that influence of clay minerals on residual strength of these soils can not be simply evaluated based on their abundance.
Persistent Identifierhttp://hdl.handle.net/10722/173979
ISSN
2023 Impact Factor: 6.9
2023 SCImago Journal Rankings: 2.437
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorWen, BP-
dc.contributor.authorAydin, A-
dc.contributor.authorDuzgoren-Aydin, NS-
dc.contributor.authorLi, Y-
dc.contributor.authorChen, HY-
dc.contributor.authorXiao, SD-
dc.date.accessioned2012-11-06T07:16:47Z-
dc.date.available2012-11-06T07:16:47Z-
dc.date.issued2007-
dc.identifier.citationEngineering Geology, 2007, v. 93 n. 3-4, p. 82-98-
dc.identifier.issn0013-7952-
dc.identifier.urihttp://hdl.handle.net/10722/173979-
dc.description.abstractSlip zones of the large landslides in the Three Gorges area are commonly composed of fine-grained soils with substantial amount of coarse-grained particles, particularly gravel-sized particles. In this study, residual strength of the soils from slip zones of these landslides were examined in relation to their index properties based on a survey of 170 landslides. It was found that laboratory-determined residual friction angle using gravel-free fraction of the disturbed soils from the slip zones was closely related to clay content, liquid limit and plasticity index. On the other hand, in-situ residual friction angle of these soils (i.e. including gravel fraction) showed very weak correlations with clay content and Atterberg limits, but was largely dependent on gravel and fines (clays + silts) contents, increasing with gravels and decreasing with fines, and displayed strong linear correlation with the ratio of gravel to fines contents. These observations indicate that among the index properties, clay content and Atterberg limits can be used to estimate residual strength of the soils finer than 2 mm, but they are not appropriate evaluate the residual strength of the soils containing considerable amount of gravel-sized particles. For the latter, particle size distribution (particularly the ratio of gravel to fines contents) appears to be a useful index. Additionally, it was found that there was no identifiable correlation between relative abundance of individual major clay minerals and residual friction angles of both gravel-free fraction of disturbed and in-situ soils, suggesting that influence of clay minerals on residual strength of these soils can not be simply evaluated based on their abundance.-
dc.languageeng-
dc.publisherElsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/enggeo-
dc.relation.ispartofEngineering Geology-
dc.subjectLandslide slip zones-
dc.subjectFine-grained soils with substantial amount of coarse-grained particles-
dc.subjectResidual strength-
dc.subjectIndex properties-
dc.subjectThe Three Gorges area-
dc.titleResidual strength of slip zones of large landslides in the Three Gorges area, Chinaen_US
dc.typeArticleen_US
dc.identifier.emailLi, Y: li.dennis@hotmail.com-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/j.enggeo.2007.05.006-
dc.identifier.scopuseid_2-s2.0-34547987980-
dc.identifier.volume93-
dc.identifier.issue3-4-
dc.identifier.spage82-
dc.identifier.epage98-
dc.identifier.isiWOS:000249887000002-
dc.publisher.placeNetherlands-
dc.identifier.issnl0013-7952-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats