File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Study on an extended Boussinesq equation

TitleStudy on an extended Boussinesq equation
Authors
KeywordsApproximate Solution
Exact Soliton Solutions
Painlevé-Integrability
Issue Date2007
PublisherInstitute of Physics Publishing. The Journal's web site is located at http://www.iop.org/journals/cp
Citation
Chinese Physics, 2007, v. 16 n. 8, p. 2167-2179 How to Cite?
AbstractAn extended Boussinesq equation that models weakly nonlinear and weakly dispersive waves on a uniform layer of water is studied in this paper. The results show that the equation is not Painlevé-integrable in general. Some particular exact travelling wave solutions are obtained by using a function expansion method. An approximate solitary wave solution with physical significance is obtained by using a perturbation method. We find that the extended Boussinesq equation with a depth parameter of 1/2 is able to match the Laitone's (1960) second order solitary wave solution of the Euler equations. © 2007 Chin. Phys. Soc. and IOP Publishing Ltd.
Persistent Identifierhttp://hdl.handle.net/10722/177748
ISSN
References

 

DC FieldValueLanguage
dc.contributor.authorChen, CLen_US
dc.contributor.authorZhang, JEen_US
dc.contributor.authorLi, YSen_US
dc.date.accessioned2012-12-19T09:39:47Z-
dc.date.available2012-12-19T09:39:47Z-
dc.date.issued2007en_US
dc.identifier.citationChinese Physics, 2007, v. 16 n. 8, p. 2167-2179en_US
dc.identifier.issn1009-1963en_US
dc.identifier.urihttp://hdl.handle.net/10722/177748-
dc.description.abstractAn extended Boussinesq equation that models weakly nonlinear and weakly dispersive waves on a uniform layer of water is studied in this paper. The results show that the equation is not Painlevé-integrable in general. Some particular exact travelling wave solutions are obtained by using a function expansion method. An approximate solitary wave solution with physical significance is obtained by using a perturbation method. We find that the extended Boussinesq equation with a depth parameter of 1/2 is able to match the Laitone's (1960) second order solitary wave solution of the Euler equations. © 2007 Chin. Phys. Soc. and IOP Publishing Ltd.en_US
dc.languageengen_US
dc.publisherInstitute of Physics Publishing. The Journal's web site is located at http://www.iop.org/journals/cpen_US
dc.relation.ispartofChinese Physicsen_US
dc.subjectApproximate Solutionen_US
dc.subjectExact Soliton Solutionsen_US
dc.subjectPainlevé-Integrabilityen_US
dc.titleStudy on an extended Boussinesq equationen_US
dc.typeArticleen_US
dc.identifier.emailZhang, JE: jinzhang@hku.hken_US
dc.identifier.authorityZhang, JE=rp01125en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1088/1009-1963/16/8/004en_US
dc.identifier.scopuseid_2-s2.0-34548805951en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-34548805951&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume16en_US
dc.identifier.issue8en_US
dc.identifier.spage2167en_US
dc.identifier.epage2179en_US
dc.publisher.placeUnited Kingdomen_US
dc.identifier.scopusauthoridChen, CL=15825031300en_US
dc.identifier.scopusauthoridZhang, JE=7601346659en_US
dc.identifier.scopusauthoridLi, YS=14826895200en_US
dc.identifier.citeulike1578266-
dc.identifier.issnl1009-1963-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats