File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1007/s11356-011-0525-1
- Scopus: eid_2-s2.0-80053983325
- PMID: 21626443
- WOS: WOS:000298986200021
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Comparison of initial hydrolysis of the three dimethyl phthalate esters (DMPEs) by a basidiomycetous yeast, Trichosporon DMI-5-1, from coastal sediment
Title | Comparison of initial hydrolysis of the three dimethyl phthalate esters (DMPEs) by a basidiomycetous yeast, Trichosporon DMI-5-1, from coastal sediment |
---|---|
Authors | |
Keywords | Basidiomycetous yeast Biodegradation Dimethyl phthalate esters Plasticizers Trichosporon sp. |
Issue Date | 2011 |
Publisher | Springer. The Journal's web site is located at http://www.springer.com/environment/journal/11356 |
Citation | Environmental Science And Pollution Research, 2011, v. 18 n. 9, p. 1653-1660 How to Cite? |
Abstract | Purpose: Dimethyl phthalate esters (DMPEs) are a group of plasticizers commonly detected in the environment with potential adverse human health impact. The degradation of DMPEs by fungal systems has been studied to a limited extent, particularly by yeasts. In this study, a basidiomycetous yeast Trichosporon DMI-5-1 capable of degrading DMPEs was obtained and the degradation pathways were investigated. Results: A DMPE-degrading yeast was isolated from costal sediment by enrichment culture technique and was identified as Trichosporon sp. DMI-5-1 based on microscopic morphology and 18S rDNA sequence. Comparative investigations on biodegradation of three isomers of DMPEs, namely dimethyl phthalate (DMP), dimethyl isophthalate (DMI), and dimethyl terephthalate (DMT), were carried out with this yeast strain. Trichosporon sp. DMI-5-1 could not mineralize DMPEs completely but transform them to respective monomethyl phthalate or phthalic acid. Biochemical degradation pathways for the three DMPE isomers by Trichosporon sp. DMI-5-1 were apparently different. The yeast carried out one-step ester hydrolysis of DMP and DMI to respective monoesters (monomethyl phthalate and monomethyl isophthalate, respectively) and no further metabolism of these two monoesters. Meanwhile, DMT was transformed by the yeast to monomethyl terephthalate and subsequently to terephthalic acid by stepwise hydrolysis of the two ester bonds. Conclusions: This study shows that different catalytic processes are involved in the transformation of DMPEs by the basidiomycetous yeast Trichosporon sp. DMI-5-1 and suggests that its esterases, responsible for the initial hydrolyzing the two ester bonds of DMPEs, are highly substrate specific. © 2011 Springer-Verlag. |
Persistent Identifier | http://hdl.handle.net/10722/179256 |
ISSN | 2022 Impact Factor: 5.8 2023 SCImago Journal Rankings: 1.006 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Luo, ZH | en_US |
dc.contributor.author | Wu, YR | en_US |
dc.contributor.author | Pang, KL | en_US |
dc.contributor.author | Gu, JD | en_US |
dc.contributor.author | Vrijmoed, LLP | en_US |
dc.date.accessioned | 2012-12-19T09:53:25Z | - |
dc.date.available | 2012-12-19T09:53:25Z | - |
dc.date.issued | 2011 | en_US |
dc.identifier.citation | Environmental Science And Pollution Research, 2011, v. 18 n. 9, p. 1653-1660 | en_US |
dc.identifier.issn | 0944-1344 | en_US |
dc.identifier.uri | http://hdl.handle.net/10722/179256 | - |
dc.description.abstract | Purpose: Dimethyl phthalate esters (DMPEs) are a group of plasticizers commonly detected in the environment with potential adverse human health impact. The degradation of DMPEs by fungal systems has been studied to a limited extent, particularly by yeasts. In this study, a basidiomycetous yeast Trichosporon DMI-5-1 capable of degrading DMPEs was obtained and the degradation pathways were investigated. Results: A DMPE-degrading yeast was isolated from costal sediment by enrichment culture technique and was identified as Trichosporon sp. DMI-5-1 based on microscopic morphology and 18S rDNA sequence. Comparative investigations on biodegradation of three isomers of DMPEs, namely dimethyl phthalate (DMP), dimethyl isophthalate (DMI), and dimethyl terephthalate (DMT), were carried out with this yeast strain. Trichosporon sp. DMI-5-1 could not mineralize DMPEs completely but transform them to respective monomethyl phthalate or phthalic acid. Biochemical degradation pathways for the three DMPE isomers by Trichosporon sp. DMI-5-1 were apparently different. The yeast carried out one-step ester hydrolysis of DMP and DMI to respective monoesters (monomethyl phthalate and monomethyl isophthalate, respectively) and no further metabolism of these two monoesters. Meanwhile, DMT was transformed by the yeast to monomethyl terephthalate and subsequently to terephthalic acid by stepwise hydrolysis of the two ester bonds. Conclusions: This study shows that different catalytic processes are involved in the transformation of DMPEs by the basidiomycetous yeast Trichosporon sp. DMI-5-1 and suggests that its esterases, responsible for the initial hydrolyzing the two ester bonds of DMPEs, are highly substrate specific. © 2011 Springer-Verlag. | en_US |
dc.language | eng | en_US |
dc.publisher | Springer. The Journal's web site is located at http://www.springer.com/environment/journal/11356 | en_US |
dc.relation.ispartof | Environmental Science and Pollution Research | en_US |
dc.rights | The original publication is available at www.springerlink.com | - |
dc.subject | Basidiomycetous yeast | - |
dc.subject | Biodegradation | - |
dc.subject | Dimethyl phthalate esters | - |
dc.subject | Plasticizers | - |
dc.subject | Trichosporon sp. | - |
dc.subject.mesh | Biodegradation, Environmental | en_US |
dc.subject.mesh | Environmental Monitoring | en_US |
dc.subject.mesh | Esters - Metabolism | en_US |
dc.subject.mesh | Fungal Proteins - Isolation & Purification | en_US |
dc.subject.mesh | Geologic Sediments - Chemistry - Microbiology | en_US |
dc.subject.mesh | Hydrolysis | en_US |
dc.subject.mesh | Mycological Typing Techniques | en_US |
dc.subject.mesh | Phthalic Acids - Chemistry | en_US |
dc.subject.mesh | Plasticizers - Chemistry | en_US |
dc.subject.mesh | Rna, Ribosomal, 18S - Genetics | en_US |
dc.subject.mesh | Trichosporon - Classification - Metabolism | en_US |
dc.title | Comparison of initial hydrolysis of the three dimethyl phthalate esters (DMPEs) by a basidiomycetous yeast, Trichosporon DMI-5-1, from coastal sediment | en_US |
dc.type | Article | en_US |
dc.identifier.email | Gu, JD: jdgu@hkucc.hku.hk | en_US |
dc.identifier.authority | Gu, JD=rp00701 | en_US |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.doi | 10.1007/s11356-011-0525-1 | en_US |
dc.identifier.pmid | 21626443 | - |
dc.identifier.scopus | eid_2-s2.0-80053983325 | en_US |
dc.identifier.hkuros | 209611 | - |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-80053983325&selection=ref&src=s&origin=recordpage | en_US |
dc.identifier.volume | 18 | en_US |
dc.identifier.issue | 9 | en_US |
dc.identifier.spage | 1653 | en_US |
dc.identifier.epage | 1660 | en_US |
dc.identifier.isi | WOS:000298986200021 | - |
dc.publisher.place | Germany | en_US |
dc.identifier.scopusauthorid | Luo, ZH=35206114900 | en_US |
dc.identifier.scopusauthorid | Wu, YR=36195002000 | en_US |
dc.identifier.scopusauthorid | Pang, KL=7101856049 | en_US |
dc.identifier.scopusauthorid | Gu, JD=7403129601 | en_US |
dc.identifier.scopusauthorid | Vrijmoed, LLP=7003337180 | en_US |
dc.identifier.citeulike | 9444504 | - |
dc.identifier.issnl | 0944-1344 | - |