File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

postgraduate thesis: GABAergic transmission in developmental establishment of a gravity-related spatial reference

TitleGABAergic transmission in developmental establishment of a gravity-related spatial reference
Authors
Issue Date2011
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Citation
Cao, Z. [曹志文]. (2011). GABAergic transmission in developmental establishment of a gravity-related spatial reference. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4715130
AbstractIn rats, the subnuclei of the inferior olive (IO) and thalamus exist topographic spatial representation to sinusoidal horizontal linear translations along either the antero-posterior or interaural direction. To examine the effect of GABAergic neurotransmission within the vestibular nucleus on the establishment of gravity-related topographic spatial representation in relay station of the central vestibular pathway, GABAA receptor antagonist bicuculline was used to chronically perturb GABA transmission within the vestibular nucleus of postnatal rats. Implantation of bicuculline-loaded or saline-loaded Elvax slice onto the dorsal surface of vestibular nucleus was performed in P1 rats which were allowed to recover into adulthood. Fos protein expression was used as an indicator to identify central neurons responsive to horizontal linear accelerations. In stationary or labyrinthectomized rats, Fos-immunoreactive (ir) neurons were either absent or sporadically scattered throughout the IO and thalamic subnuclei, indicating that the Fos expression in these neural area was otolithic in origin. In the saline control group, Fos expression induced by horizontal antero-posterior linear acceleration was observed in both the IO and thalamus. Responsive IO subnuclei include β subnucleus of IO and dorsomedial cell column while those in the thalamus include central medial nucleus, paracentral nucleus, mediodorsal nucleus, central lateral nucleus, zona incerta and subparafascicular nucleus of thalamus. For-ir neurons responsive to horizontal interaural linear acceleration were found in those IO subnuclei and thalamic subnuclei. When compared with the saline-treated group, the number of Fos-ir IO neurons responsive to horizontal linear acceleration was significantly lower in adult rats perturbed with bicuculline at P1. Besides, the pattern of Fos expression in both the IO and thalamus was altered in adult rats pretreated with bicuculline. In the utricle-related thalamic subnuclei, the postnatal time when Fos-ir neurons were found triggered by otolithic stimulation was delayed and the number of these Fos-ir neurons was fewer in the bicuculline-treated group than those in the saline-treated group. To investigate whether there exists a critical period for postnatal establishment of topographic spatial representation in the IO and thalamus, implantation of bicuculline-loaded Elvax slice onto the vestibular nucleus was carried out in P14 rats. The topographic spatial representation in IO and thalamus of those rats were unchanged as compared with adult rats pretreated with saline at P14. These results indicate that the GABAergic neuronal circuit in the vestibular nucleus plays an important role in postnatal establishment of topographic spatial representation in the central vestibular system. Most importantly, we documented the occurrence of a postnatal critical period (between P1 and P14) during which GABAergic transmission regulated the formation of a gravity-related spatial framework in the brain.
DegreeMaster of Philosophy
SubjectGABA - Receptors.
Vestibular nuclei.
Neurons.
Rats - Physiology.
Dept/ProgramPhysiology
Persistent Identifierhttp://hdl.handle.net/10722/179972
HKU Library Item IDb4715130

 

DC FieldValueLanguage
dc.contributor.authorCao, Zhiwen.-
dc.contributor.author曹志文.-
dc.date.issued2011-
dc.identifier.citationCao, Z. [曹志文]. (2011). GABAergic transmission in developmental establishment of a gravity-related spatial reference. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4715130-
dc.identifier.urihttp://hdl.handle.net/10722/179972-
dc.description.abstractIn rats, the subnuclei of the inferior olive (IO) and thalamus exist topographic spatial representation to sinusoidal horizontal linear translations along either the antero-posterior or interaural direction. To examine the effect of GABAergic neurotransmission within the vestibular nucleus on the establishment of gravity-related topographic spatial representation in relay station of the central vestibular pathway, GABAA receptor antagonist bicuculline was used to chronically perturb GABA transmission within the vestibular nucleus of postnatal rats. Implantation of bicuculline-loaded or saline-loaded Elvax slice onto the dorsal surface of vestibular nucleus was performed in P1 rats which were allowed to recover into adulthood. Fos protein expression was used as an indicator to identify central neurons responsive to horizontal linear accelerations. In stationary or labyrinthectomized rats, Fos-immunoreactive (ir) neurons were either absent or sporadically scattered throughout the IO and thalamic subnuclei, indicating that the Fos expression in these neural area was otolithic in origin. In the saline control group, Fos expression induced by horizontal antero-posterior linear acceleration was observed in both the IO and thalamus. Responsive IO subnuclei include β subnucleus of IO and dorsomedial cell column while those in the thalamus include central medial nucleus, paracentral nucleus, mediodorsal nucleus, central lateral nucleus, zona incerta and subparafascicular nucleus of thalamus. For-ir neurons responsive to horizontal interaural linear acceleration were found in those IO subnuclei and thalamic subnuclei. When compared with the saline-treated group, the number of Fos-ir IO neurons responsive to horizontal linear acceleration was significantly lower in adult rats perturbed with bicuculline at P1. Besides, the pattern of Fos expression in both the IO and thalamus was altered in adult rats pretreated with bicuculline. In the utricle-related thalamic subnuclei, the postnatal time when Fos-ir neurons were found triggered by otolithic stimulation was delayed and the number of these Fos-ir neurons was fewer in the bicuculline-treated group than those in the saline-treated group. To investigate whether there exists a critical period for postnatal establishment of topographic spatial representation in the IO and thalamus, implantation of bicuculline-loaded Elvax slice onto the vestibular nucleus was carried out in P14 rats. The topographic spatial representation in IO and thalamus of those rats were unchanged as compared with adult rats pretreated with saline at P14. These results indicate that the GABAergic neuronal circuit in the vestibular nucleus plays an important role in postnatal establishment of topographic spatial representation in the central vestibular system. Most importantly, we documented the occurrence of a postnatal critical period (between P1 and P14) during which GABAergic transmission regulated the formation of a gravity-related spatial framework in the brain.-
dc.languageeng-
dc.publisherThe University of Hong Kong (Pokfulam, Hong Kong)-
dc.relation.ispartofHKU Theses Online (HKUTO)-
dc.rightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works.-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.source.urihttp://hub.hku.hk/bib/B47151304-
dc.subject.lcshGABA - Receptors.-
dc.subject.lcshVestibular nuclei.-
dc.subject.lcshNeurons.-
dc.subject.lcshRats - Physiology.-
dc.titleGABAergic transmission in developmental establishment of a gravity-related spatial reference-
dc.typePG_Thesis-
dc.identifier.hkulb4715130-
dc.description.thesisnameMaster of Philosophy-
dc.description.thesislevelMaster-
dc.description.thesisdisciplinePhysiology-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.5353/th_b4715130-
dc.date.hkucongregation2012-
dc.identifier.mmsid991032816569703414-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats