File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers

TitleMagnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers
Authors
Issue Date2013
Citation
Nature Communications, 2013, v. 4, p. 2053 How to Cite?
AbstractIn monolayer group-VI transition metal dichalcogenides, charge carriers have spin and valley degrees of freedom, both associated with magnetic moments. On the other hand, the layer degree of freedom in multilayers is associated with electrical polarization. Here we show that transition metal dichalcogenide bilayers offer an unprecedented platform to realize a strong coupling between the spin, valley and layer pseudospin of holes. Such coupling gives rise to the spin Hall effect and spin-dependent selection rule for optical transitions in inversion symmetric bilayer and leads to a variety of magnetoelectric effects permitting quantum manipulation of these electronic degrees of freedom. Oscillating electric and magnetic fields can both drive the hole spin resonance where the two fields have valley-dependent interference, making an interplay between the spin and valley as information carriers possible for potential valley-spintronic applications. We show how to realize quantum gates on the spin qubit controlled by the valley bit. © 2013 Macmillan Publishers Limited. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/184651
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorGong, Zen_US
dc.contributor.authorLiu, GBen_US
dc.contributor.authorYu, Hen_US
dc.contributor.authorXiao, Den_US
dc.contributor.authorCui, Xen_US
dc.contributor.authorXu, XDen_US
dc.contributor.authorYao, Wen_US
dc.date.accessioned2013-07-15T10:01:42Z-
dc.date.available2013-07-15T10:01:42Z-
dc.date.issued2013en_US
dc.identifier.citationNature Communications, 2013, v. 4, p. 2053en_US
dc.identifier.urihttp://hdl.handle.net/10722/184651-
dc.description.abstractIn monolayer group-VI transition metal dichalcogenides, charge carriers have spin and valley degrees of freedom, both associated with magnetic moments. On the other hand, the layer degree of freedom in multilayers is associated with electrical polarization. Here we show that transition metal dichalcogenide bilayers offer an unprecedented platform to realize a strong coupling between the spin, valley and layer pseudospin of holes. Such coupling gives rise to the spin Hall effect and spin-dependent selection rule for optical transitions in inversion symmetric bilayer and leads to a variety of magnetoelectric effects permitting quantum manipulation of these electronic degrees of freedom. Oscillating electric and magnetic fields can both drive the hole spin resonance where the two fields have valley-dependent interference, making an interplay between the spin and valley as information carriers possible for potential valley-spintronic applications. We show how to realize quantum gates on the spin qubit controlled by the valley bit. © 2013 Macmillan Publishers Limited. All rights reserved.-
dc.languageengen_US
dc.relation.ispartofNature Communicationsen_US
dc.titleMagnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayersen_US
dc.typeArticleen_US
dc.identifier.emailGong, Z: gongzr@hku.hken_US
dc.identifier.emailYu, H: yuhongyi@hku.hken_US
dc.identifier.emailCui, X: xdcui@hku.hken_US
dc.identifier.emailYao, W: wangyao@hku.hken_US
dc.identifier.authorityCui, X=rp00689en_US
dc.identifier.authorityYao, W=rp00827en_US
dc.description.naturepostprint-
dc.identifier.doi10.1038/ncomms3053-
dc.identifier.pmid23784147-
dc.identifier.scopuseid_2-s2.0-84879661182-
dc.identifier.hkuros215536en_US
dc.identifier.volume4en_US
dc.identifier.spage2053en_US
dc.identifier.epage2053en_US
dc.identifier.eissn2041-1723-
dc.identifier.isiWOS:000323626700007-
dc.identifier.issnl2041-1723-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats