File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1137/120886443
- Scopus: eid_2-s2.0-84880445913
- WOS: WOS:000321042800001
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: An Optimal Binding Number Condition for Bipancyclism
Title | An Optimal Binding Number Condition for Bipancyclism |
---|---|
Authors | |
Keywords | Binding number Bipancyclism Bipartite graph Hamiltonian cycle |
Issue Date | 2013 |
Publisher | Society for Industrial and Applied Mathematics. The Journal's web site is located at http://www.siam.org/journals/sidma.php |
Citation | SIAM Journal on Discrete Mathematics, 2013, v. 27 n. 2, p. 597-618 How to Cite? |
Abstract | Let $G=(V_1,V_2,E)$ be a balanced bipartite graph with $2n$ vertices. The bipartite binding number of $G$, denoted by $B(G)$, is defined to be $n$ if $G=K_{n,n}$ and $min_{i,in,{1,2}},min_{emptyset
e Ssubseteq V_iatophfill |N(S)| |
Persistent Identifier | http://hdl.handle.net/10722/185942 |
ISSN | 2023 Impact Factor: 0.9 2023 SCImago Journal Rankings: 1.031 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hu, Z | - |
dc.contributor.author | Law, KH | - |
dc.contributor.author | Zang, W | - |
dc.date.accessioned | 2013-08-20T11:47:27Z | - |
dc.date.available | 2013-08-20T11:47:27Z | - |
dc.date.issued | 2013 | - |
dc.identifier.citation | SIAM Journal on Discrete Mathematics, 2013, v. 27 n. 2, p. 597-618 | - |
dc.identifier.issn | 0895-4801 | - |
dc.identifier.uri | http://hdl.handle.net/10722/185942 | - |
dc.description.abstract | Let $G=(V_1,V_2,E)$ be a balanced bipartite graph with $2n$ vertices. The bipartite binding number of $G$, denoted by $B(G)$, is defined to be $n$ if $G=K_{n,n}$ and $min_{i,in,{1,2}},min_{emptyset e Ssubseteq V_iatophfill |N(S)|<n}|N(S)|/|S|$ otherwise. We call $G$ bipancyclic if it contains a cycle of every even length $m$ for $4 le m le 2n$. The purpose of this paper is to show that if $B(G)>3/2$ and $n ge 139$, then $G$ is bipancyclic; the bound $3/2$ is best possible in the sense that there exist infinitely many balanced bipartite graphs $G$ that have $B(G)=3/2$ but are not Hamiltonian. | - |
dc.language | eng | - |
dc.publisher | Society for Industrial and Applied Mathematics. The Journal's web site is located at http://www.siam.org/journals/sidma.php | - |
dc.relation.ispartof | SIAM Journal on Discrete Mathematics | - |
dc.rights | © 2013 Society for Industrial and Applied Mathematics. First Published in SIAM Journal on Discrete Mathematics in volume 27, issue 2, published by the Society for Industrial and Applied Mathematics (SIAM). | - |
dc.subject | Binding number | - |
dc.subject | Bipancyclism | - |
dc.subject | Bipartite graph | - |
dc.subject | Hamiltonian cycle | - |
dc.title | An Optimal Binding Number Condition for Bipancyclism | - |
dc.type | Article | - |
dc.identifier.email | Law, KH: kahoo@hku.hk | - |
dc.identifier.email | Zang, W: wzang@maths.hku.hk | - |
dc.identifier.authority | Zang, W=rp00839 | - |
dc.description.nature | published_or_final_version | - |
dc.identifier.doi | 10.1137/120886443 | - |
dc.identifier.scopus | eid_2-s2.0-84880445913 | - |
dc.identifier.hkuros | 217627 | - |
dc.identifier.volume | 27 | - |
dc.identifier.issue | 2 | - |
dc.identifier.spage | 597 | - |
dc.identifier.epage | 618 | - |
dc.identifier.isi | WOS:000321042800001 | - |
dc.publisher.place | United States | - |
dc.identifier.issnl | 0895-4801 | - |