File Download
Supplementary
-
Citations:
- Appears in Collections:
postgraduate thesis: Development of power system monitoring by magnetic field sensing with spintronic sensors
Title | Development of power system monitoring by magnetic field sensing with spintronic sensors |
---|---|
Authors | |
Advisors | |
Issue Date | 2013 |
Publisher | The University of Hong Kong (Pokfulam, Hong Kong) |
Citation | Sun, X. [孫旭]. (2013). Development of power system monitoring by magnetic field sensing with spintronic sensors. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b5153706 |
Abstract | This dissertation presents novel application of spintronic sensors in power system monitoring. Spintronic sensors including giant magnetoresistance (GMR) sensors and tunnel magnetoresistance (TMR) sensors are advanced in magnetic field sensing. In power industry, power-frequency magnetic fields are produced by electric power sources, equipment and power lines. Thus it is impossible for monitoring the power system by sensing the emanated magnetic field. In Chapter 2, a novel concept based on magnetoresistive (MR) sensors is proposed for transmission line monitoring. A proof-of-concept laboratory setup was constructed and a series of experiments were carried out for demonstration. The result shows the feasibility of using this power system monitoring method in reality.
In order to handle complicated transmission line configuration with the proposed method, an improved current monitoring technology is proposed in Chapter 3. It is realized by developing a current source reconstruction method based on stochastic optimization strategy. This concept of current monitoring by magnetic field sensing and current source reconstruction was experimentally implemented and verified in our laboratory setup. A typical model of 500 kV three-phase transmission lines was simulated to further corroborate this technology. The reconstruction results for the 500 kV transmission lines verify the feasibility and practicality of this novel current monitoring technology based on magnetic field sensing at the top of a transmission tower for monitoring overhead transmission lines.
Chapter 4 offers further improvement of the transmission-line monitoring technology. Improved technology can measure simultaneously both electrical and spatial parameters of multiple lines in real-time in a non-contact way. Two typical models of high-voltage three-phase transmission lines were simulated and the resulting magnetic fields were calculated. A source reconstruction method was developed to reconstruct the spatial and electrical parameters from the magnetic field emanated by the overhead transmission lines. The reconstruction results for the 500 kV and 220 kV transmission lines verify the feasibility and practicality of this non-contact transmission-line monitoring technology based on magnetic field sensing.
As well as the high-voltage transmission-line, the technology is applied in underground power cable operation-state monitoring and energization-status identification in Chapter 5. The magnetic field distribution of the cable was studied by using finite element method (FEM) for the power cable operating in different states, i.e. current-energized state (the cable is energized and carries load current) and voltage-energized state (the cable is energized but carries no load current). Application of this method was demonstrated on an 11 kV cable with metallic outer sheath. The results highly matched with the actual source parameters of the cable. An experimental setup was constructed and the test results were used for demonstration this method.
In order to enhance the applicability of the proposed power system monitoring technology in practice, magnetic flux concentrators (MFC) and magnetic shielding are studied and designed for MR sensors in Chapter 6. |
Degree | Doctor of Philosophy |
Subject | Electric power systems - Control |
Dept/Program | Electrical and Electronic Engineering |
Persistent Identifier | http://hdl.handle.net/10722/196015 |
HKU Library Item ID | b5153706 |
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Jiang, L | - |
dc.contributor.advisor | Pong, PWT | - |
dc.contributor.advisor | Chew, WC | - |
dc.contributor.author | Sun, Xu | - |
dc.contributor.author | 孫旭 | - |
dc.date.accessioned | 2014-03-21T03:50:05Z | - |
dc.date.available | 2014-03-21T03:50:05Z | - |
dc.date.issued | 2013 | - |
dc.identifier.citation | Sun, X. [孫旭]. (2013). Development of power system monitoring by magnetic field sensing with spintronic sensors. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b5153706 | - |
dc.identifier.uri | http://hdl.handle.net/10722/196015 | - |
dc.description.abstract | This dissertation presents novel application of spintronic sensors in power system monitoring. Spintronic sensors including giant magnetoresistance (GMR) sensors and tunnel magnetoresistance (TMR) sensors are advanced in magnetic field sensing. In power industry, power-frequency magnetic fields are produced by electric power sources, equipment and power lines. Thus it is impossible for monitoring the power system by sensing the emanated magnetic field. In Chapter 2, a novel concept based on magnetoresistive (MR) sensors is proposed for transmission line monitoring. A proof-of-concept laboratory setup was constructed and a series of experiments were carried out for demonstration. The result shows the feasibility of using this power system monitoring method in reality. In order to handle complicated transmission line configuration with the proposed method, an improved current monitoring technology is proposed in Chapter 3. It is realized by developing a current source reconstruction method based on stochastic optimization strategy. This concept of current monitoring by magnetic field sensing and current source reconstruction was experimentally implemented and verified in our laboratory setup. A typical model of 500 kV three-phase transmission lines was simulated to further corroborate this technology. The reconstruction results for the 500 kV transmission lines verify the feasibility and practicality of this novel current monitoring technology based on magnetic field sensing at the top of a transmission tower for monitoring overhead transmission lines. Chapter 4 offers further improvement of the transmission-line monitoring technology. Improved technology can measure simultaneously both electrical and spatial parameters of multiple lines in real-time in a non-contact way. Two typical models of high-voltage three-phase transmission lines were simulated and the resulting magnetic fields were calculated. A source reconstruction method was developed to reconstruct the spatial and electrical parameters from the magnetic field emanated by the overhead transmission lines. The reconstruction results for the 500 kV and 220 kV transmission lines verify the feasibility and practicality of this non-contact transmission-line monitoring technology based on magnetic field sensing. As well as the high-voltage transmission-line, the technology is applied in underground power cable operation-state monitoring and energization-status identification in Chapter 5. The magnetic field distribution of the cable was studied by using finite element method (FEM) for the power cable operating in different states, i.e. current-energized state (the cable is energized and carries load current) and voltage-energized state (the cable is energized but carries no load current). Application of this method was demonstrated on an 11 kV cable with metallic outer sheath. The results highly matched with the actual source parameters of the cable. An experimental setup was constructed and the test results were used for demonstration this method. In order to enhance the applicability of the proposed power system monitoring technology in practice, magnetic flux concentrators (MFC) and magnetic shielding are studied and designed for MR sensors in Chapter 6. | - |
dc.language | eng | - |
dc.publisher | The University of Hong Kong (Pokfulam, Hong Kong) | - |
dc.relation.ispartof | HKU Theses Online (HKUTO) | - |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.rights | The author retains all proprietary rights, (such as patent rights) and the right to use in future works. | - |
dc.subject.lcsh | Electric power systems - Control | - |
dc.title | Development of power system monitoring by magnetic field sensing with spintronic sensors | - |
dc.type | PG_Thesis | - |
dc.identifier.hkul | b5153706 | - |
dc.description.thesisname | Doctor of Philosophy | - |
dc.description.thesislevel | Doctoral | - |
dc.description.thesisdiscipline | Electrical and Electronic Engineering | - |
dc.description.nature | published_or_final_version | - |
dc.identifier.doi | 10.5353/th_b5153706 | - |
dc.identifier.mmsid | 991036115939703414 | - |