File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

postgraduate thesis: Incremental algorithms for multilinear principal component analysis of tensor objects

TitleIncremental algorithms for multilinear principal component analysis of tensor objects
Authors
Issue Date2013
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Citation
Cao, Z. [曹子晟]. (2013). Incremental algorithms for multilinear principal component analysis of tensor objects. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b5185911
AbstractIn recent years, massive data sets are generated in many areas of science and business, and are gathered by using advanced data acquisition techniques. New approaches are therefore required to facilitate effective data management and data analysis in this big data era, especially to analyze multidimensional data for real-time applications. This thesis aims at developing generic and effective algorithms for compressing and recovering online multidimensional data, and applying such algorithms in image processing and other related areas. Since multidimensional data are usually represented by tensors, this research uses multilinear algebra as the mathematical foundation to facilitate development. After reviewing the techniques of singular value decomposition (SVD), principal component analysis (PCA) and tensor decomposition, this thesis deduces an effective multilinear principal component analysis (MPCA) method to process such data by seeking optimal orthogonal basis functions that map the original tensor space to a tensor subspace with minimal reconstruction error. Two real examples, 3D data compression for positron emission tomography (PET) and offline fabric defect detection, are used to illustrate the tensor decomposition method and the deduced MPCA method, respectively. Based on the deduced MPCA method, this research develops an incremental MPCA (IMPCA) algorithm which targets at compressing and recovering online tensor objects. To reduce computational complexity of the IMPCA algorithm, this research investigates the low-rank updates of singular values in the matrix and tensor domains, which leads to the development of a sequential low-rank update scheme similar to the sequential Karhunen-Loeve algorithm (SKL) for incremental matrix singular value decomposition, a sequential low-rank update scheme for incremental tensor decomposition, and a quick subspace tracking (QST) algorithm to further enhance the low-rank updates of singular values if the matrix is positive-symmetric definite. Although QST is slightly inferior to the SKL algorithm in terms of accuracy in estimating eigenvector and eigenvalue, the algorithm has lower computational complexity. Two fast incremental MPCA (IMPCA) algorithms are then developed by incorporating the SKL algorithm and the QST algorithm separately into the IMPCA algorithm. Results obtained from applying the developed IMPCA algorithms to detect anomalies from online multidimensional data in a number of numerical experiments, and to track and reconstruct the global surface temperature anomalies over the past several decades clearly confirm the excellent performance of the algorithms. This research also applies the developed IMPCA algorithms to solve an online fabric defect inspection problem. Unlike existing pixel-wise detection schemes, the developed algorithms employ a scanning window to extract tensor objects from fabric images, and to detect the occurrence of anomalies. The proposed method is unsupervised because no pre-training is needed. Two image processing techniques, selective local Gabor binary patterns (SLGBP) and multi-channel feature combination, are developed to accomplish the feature extraction of textile patterns and represent the features as tensor objects. Results of experiments conducted by using a real textile dataset confirm that the developed algorithms are comparable to existing supervised methods in terms of accuracy and computational complexity. A cost-effective parallel implementation scheme is developed to solve the problem in real-time.
DegreeDoctor of Philosophy
SubjectData mining - Mathematical models
Principal components analysis
Dept/ProgramIndustrial and Manufacturing Systems Engineering
Persistent Identifierhttp://hdl.handle.net/10722/208151
HKU Library Item IDb5185911

 

DC FieldValueLanguage
dc.contributor.authorCao, Zisheng-
dc.contributor.author曹子晟-
dc.date.accessioned2015-02-13T23:11:36Z-
dc.date.available2015-02-13T23:11:36Z-
dc.date.issued2013-
dc.identifier.citationCao, Z. [曹子晟]. (2013). Incremental algorithms for multilinear principal component analysis of tensor objects. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b5185911-
dc.identifier.urihttp://hdl.handle.net/10722/208151-
dc.description.abstractIn recent years, massive data sets are generated in many areas of science and business, and are gathered by using advanced data acquisition techniques. New approaches are therefore required to facilitate effective data management and data analysis in this big data era, especially to analyze multidimensional data for real-time applications. This thesis aims at developing generic and effective algorithms for compressing and recovering online multidimensional data, and applying such algorithms in image processing and other related areas. Since multidimensional data are usually represented by tensors, this research uses multilinear algebra as the mathematical foundation to facilitate development. After reviewing the techniques of singular value decomposition (SVD), principal component analysis (PCA) and tensor decomposition, this thesis deduces an effective multilinear principal component analysis (MPCA) method to process such data by seeking optimal orthogonal basis functions that map the original tensor space to a tensor subspace with minimal reconstruction error. Two real examples, 3D data compression for positron emission tomography (PET) and offline fabric defect detection, are used to illustrate the tensor decomposition method and the deduced MPCA method, respectively. Based on the deduced MPCA method, this research develops an incremental MPCA (IMPCA) algorithm which targets at compressing and recovering online tensor objects. To reduce computational complexity of the IMPCA algorithm, this research investigates the low-rank updates of singular values in the matrix and tensor domains, which leads to the development of a sequential low-rank update scheme similar to the sequential Karhunen-Loeve algorithm (SKL) for incremental matrix singular value decomposition, a sequential low-rank update scheme for incremental tensor decomposition, and a quick subspace tracking (QST) algorithm to further enhance the low-rank updates of singular values if the matrix is positive-symmetric definite. Although QST is slightly inferior to the SKL algorithm in terms of accuracy in estimating eigenvector and eigenvalue, the algorithm has lower computational complexity. Two fast incremental MPCA (IMPCA) algorithms are then developed by incorporating the SKL algorithm and the QST algorithm separately into the IMPCA algorithm. Results obtained from applying the developed IMPCA algorithms to detect anomalies from online multidimensional data in a number of numerical experiments, and to track and reconstruct the global surface temperature anomalies over the past several decades clearly confirm the excellent performance of the algorithms. This research also applies the developed IMPCA algorithms to solve an online fabric defect inspection problem. Unlike existing pixel-wise detection schemes, the developed algorithms employ a scanning window to extract tensor objects from fabric images, and to detect the occurrence of anomalies. The proposed method is unsupervised because no pre-training is needed. Two image processing techniques, selective local Gabor binary patterns (SLGBP) and multi-channel feature combination, are developed to accomplish the feature extraction of textile patterns and represent the features as tensor objects. Results of experiments conducted by using a real textile dataset confirm that the developed algorithms are comparable to existing supervised methods in terms of accuracy and computational complexity. A cost-effective parallel implementation scheme is developed to solve the problem in real-time.-
dc.languageeng-
dc.publisherThe University of Hong Kong (Pokfulam, Hong Kong)-
dc.relation.ispartofHKU Theses Online (HKUTO)-
dc.rightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works.-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subject.lcshData mining - Mathematical models-
dc.subject.lcshPrincipal components analysis-
dc.titleIncremental algorithms for multilinear principal component analysis of tensor objects-
dc.typePG_Thesis-
dc.identifier.hkulb5185911-
dc.description.thesisnameDoctor of Philosophy-
dc.description.thesislevelDoctoral-
dc.description.thesisdisciplineIndustrial and Manufacturing Systems Engineering-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.5353/th_b5185911-
dc.identifier.mmsid991036817949703414-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats