File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Comparative reactivity studies of dppf-containing CpRuII and (C6Me6)RuII complexes towards different donor ligands (dppf=1,1′-bis(diphenylphosphino)ferrocene)

TitleComparative reactivity studies of dppf-containing CpRuII and (C6Me6)RuII complexes towards different donor ligands (dppf=1,1′-bis(diphenylphosphino)ferrocene)
Authors
KeywordsDisulfide
Hexamethylbenzene
Ruthenium
1,1′-bis(diphenylphosphino)ferrocene
Crystal structures
Cyclopentadienyl
Issue Date2004
Citation
Journal of Organometallic Chemistry, 2004, v. 689, n. 11, p. 1978-1990 How to Cite?
Abstract[CpRu(dppf)Cl] (Cp=η5-C5H5) (1) and [(HMB)Ru(dppf)Cl]PF6 ((HMB)=η6-C6Me6) (3) react with different donor ligands to give rise to N-, P- and S-bonded complexes. The stoichiometric reactions of 1 and 3 with NaNCS give the mononuclear complexes [CpRu(dppf)(NCS)] (2) and [(HMB)Ru(dppf)(NCS)]PF6 (4), respectively, in yields above 80%, while 3 also gives a dppf-bridged diruthenium complex [(HMB)Ru(NCS)2]2 (μ-dppf) (5) in 67% yield from reaction with four molar equivalents of NaNCS. Compound 5 is also obtained in 70% yield from the reaction of 4 with excess NaNCS. With CH3CN in the presence of salts, both 1 and 3 give their analogous solvento derivatives [CpRu(dppf) (CH3CN)] BPh4 (6) and [(HMB)Ru(dppf) (CH3CN)] (PF6)2 (7). With phosphines, the reaction of 1 gives chloro-displaced complexes [(CpRu(dppf)L]PF6 (L =PMe3 (8), PMe2Ph(9), whereas the reaction of 3 with PMe2Ph leads to substitution of dppf, giving [(HMB)Ru(PMe2Ph)2Cl] PF6 (10). The reaction of 1 with NaS2CNEt2 gives a dinuclear dppf-bridged complex [{CpRu(S2CNEt2)} 2(μ-dppf)] (11), whereas that of 3 results in loss of the HMB ligand giving a mononuclear complex [Ru(dppf) (S2CNEt2)2] (12). With elemental sulfur S8, 1 is oxidized to give a dinuclear CpRuIII dppf-chelated complex [{CpRu(dppf)}2(μ-S2)] (BPh4)Cl (13), whereas 3 undergoes oxidation at the ligand, giving a dppf-displaced complex [(HMB)Ru(CH3CN)2Cl] PF6 (14) and free dppfS2. The structures of 1, 2, 5-9, 11, 13 and 14 were established by X-ray single crystal diffraction analyses. Of these, 5 and 11 both contain a dppf-bridge between RuII centers, while 13 is a dinuclear CpRuIII disulfide-bridged complex; all the others are mononuclear. All complexes obtained were also spectroscopically characterized. © 2004 Elsevier B.V. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/219489
ISSN
2023 Impact Factor: 2.1
2023 SCImago Journal Rankings: 0.359
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorLu, Xiu Lian-
dc.contributor.authorVittal, Jagadese J.-
dc.contributor.authorTiekink, Edward R T-
dc.contributor.authorTan, G. K.-
dc.contributor.authorKuan, Seah Ling-
dc.contributor.authorGoh, Lai Yoong-
dc.contributor.authorHor, T. S Andy-
dc.date.accessioned2015-09-23T02:57:13Z-
dc.date.available2015-09-23T02:57:13Z-
dc.date.issued2004-
dc.identifier.citationJournal of Organometallic Chemistry, 2004, v. 689, n. 11, p. 1978-1990-
dc.identifier.issn0022-328X-
dc.identifier.urihttp://hdl.handle.net/10722/219489-
dc.description.abstract[CpRu(dppf)Cl] (Cp=η5-C5H5) (1) and [(HMB)Ru(dppf)Cl]PF6 ((HMB)=η6-C6Me6) (3) react with different donor ligands to give rise to N-, P- and S-bonded complexes. The stoichiometric reactions of 1 and 3 with NaNCS give the mononuclear complexes [CpRu(dppf)(NCS)] (2) and [(HMB)Ru(dppf)(NCS)]PF6 (4), respectively, in yields above 80%, while 3 also gives a dppf-bridged diruthenium complex [(HMB)Ru(NCS)2]2 (μ-dppf) (5) in 67% yield from reaction with four molar equivalents of NaNCS. Compound 5 is also obtained in 70% yield from the reaction of 4 with excess NaNCS. With CH3CN in the presence of salts, both 1 and 3 give their analogous solvento derivatives [CpRu(dppf) (CH3CN)] BPh4 (6) and [(HMB)Ru(dppf) (CH3CN)] (PF6)2 (7). With phosphines, the reaction of 1 gives chloro-displaced complexes [(CpRu(dppf)L]PF6 (L =PMe3 (8), PMe2Ph(9), whereas the reaction of 3 with PMe2Ph leads to substitution of dppf, giving [(HMB)Ru(PMe2Ph)2Cl] PF6 (10). The reaction of 1 with NaS2CNEt2 gives a dinuclear dppf-bridged complex [{CpRu(S2CNEt2)} 2(μ-dppf)] (11), whereas that of 3 results in loss of the HMB ligand giving a mononuclear complex [Ru(dppf) (S2CNEt2)2] (12). With elemental sulfur S8, 1 is oxidized to give a dinuclear CpRuIII dppf-chelated complex [{CpRu(dppf)}2(μ-S2)] (BPh4)Cl (13), whereas 3 undergoes oxidation at the ligand, giving a dppf-displaced complex [(HMB)Ru(CH3CN)2Cl] PF6 (14) and free dppfS2. The structures of 1, 2, 5-9, 11, 13 and 14 were established by X-ray single crystal diffraction analyses. Of these, 5 and 11 both contain a dppf-bridge between RuII centers, while 13 is a dinuclear CpRuIII disulfide-bridged complex; all the others are mononuclear. All complexes obtained were also spectroscopically characterized. © 2004 Elsevier B.V. All rights reserved.-
dc.languageeng-
dc.relation.ispartofJournal of Organometallic Chemistry-
dc.subjectDisulfide-
dc.subjectHexamethylbenzene-
dc.subjectRuthenium-
dc.subject1,1′-bis(diphenylphosphino)ferrocene-
dc.subjectCrystal structures-
dc.subjectCyclopentadienyl-
dc.titleComparative reactivity studies of dppf-containing CpRuII and (C6Me6)RuII complexes towards different donor ligands (dppf=1,1′-bis(diphenylphosphino)ferrocene)-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/j.jorganchem.2004.03.022-
dc.identifier.scopuseid_2-s2.0-2342466681-
dc.identifier.volume689-
dc.identifier.issue11-
dc.identifier.spage1978-
dc.identifier.epage1990-
dc.identifier.isiWOS:000221529500014-
dc.identifier.issnl0022-328X-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats