File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1002/(SICI)1097-0207(19990220)44:5<657::AID-NME522>3.0.CO;2-0
- Scopus: eid_2-s2.0-0033079363
- Find via
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: Bifurcation and Stability of a Three-hinged Rod under a Conservative Load
Title | Bifurcation and Stability of a Three-hinged Rod under a Conservative Load |
---|---|
Authors | |
Keywords | Bifurcation Group theoretic Three-hinged rod Singularity |
Issue Date | 1999 |
Publisher | John Wiley & Sons Ltd. The Journal's web site is located at http://www3.interscience.wiley.com/cgi-bin/jhome/1430 |
Citation | International Journal for Numerical Methods in Engineering, 1999, v. 44 n. 5, p. 657-696 How to Cite? |
Abstract | The bifurcation solutions and their stability of a three-hinged rod under conservative compressive force are investigated. The equations for the system are non-linear, and possess some symmetry properties. The symmerty group concepts are employed to exploit these symmetry properties. The symbolic computer software, Mathematica, is used for the analytical and numerical solutions. The loci of codimension-one singularity are plotted on a two-dimensional control parameter space. These curves partition the parameter space into regions of qualitatively similar bifurcation diagrams. The bifurcation solutions and their stability at typical points in the parameter diagram, and the perturbation of codimension-one singularities are discussed. Copyright © 1999 John Wiley & Sons, Ltd. |
Persistent Identifier | http://hdl.handle.net/10722/223705 |
ISSN | 2023 Impact Factor: 2.7 2023 SCImago Journal Rankings: 1.019 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rajendran, S | - |
dc.contributor.author | Leung, AYT | - |
dc.contributor.author | Starr, AG | - |
dc.contributor.author | Chan, JKW | - |
dc.date.accessioned | 2016-03-09T01:30:16Z | - |
dc.date.available | 2016-03-09T01:30:16Z | - |
dc.date.issued | 1999 | - |
dc.identifier.citation | International Journal for Numerical Methods in Engineering, 1999, v. 44 n. 5, p. 657-696 | - |
dc.identifier.issn | 0029-5981 | - |
dc.identifier.uri | http://hdl.handle.net/10722/223705 | - |
dc.description.abstract | The bifurcation solutions and their stability of a three-hinged rod under conservative compressive force are investigated. The equations for the system are non-linear, and possess some symmetry properties. The symmerty group concepts are employed to exploit these symmetry properties. The symbolic computer software, Mathematica, is used for the analytical and numerical solutions. The loci of codimension-one singularity are plotted on a two-dimensional control parameter space. These curves partition the parameter space into regions of qualitatively similar bifurcation diagrams. The bifurcation solutions and their stability at typical points in the parameter diagram, and the perturbation of codimension-one singularities are discussed. Copyright © 1999 John Wiley & Sons, Ltd. | - |
dc.language | eng | - |
dc.publisher | John Wiley & Sons Ltd. The Journal's web site is located at http://www3.interscience.wiley.com/cgi-bin/jhome/1430 | - |
dc.relation.ispartof | International Journal for Numerical Methods in Engineering | - |
dc.rights | International Journal for Numerical Methods in Engineering. Copyright © John Wiley & Sons Ltd. | - |
dc.subject | Bifurcation | - |
dc.subject | Group theoretic | - |
dc.subject | Three-hinged rod | - |
dc.subject | Singularity | - |
dc.title | Bifurcation and Stability of a Three-hinged Rod under a Conservative Load | - |
dc.type | Article | - |
dc.identifier.email | Chan, JKW: jkwchan@hkucc.hku.hk | - |
dc.identifier.doi | 10.1002/(SICI)1097-0207(19990220)44:5<657::AID-NME522>3.0.CO;2-0 | - |
dc.identifier.scopus | eid_2-s2.0-0033079363 | - |
dc.identifier.hkuros | 39359 | - |
dc.identifier.hkuros | 52601 | - |
dc.identifier.volume | 44 | - |
dc.identifier.issue | 5 | - |
dc.identifier.spage | 657 | - |
dc.identifier.epage | 696 | - |
dc.publisher.place | United Kingdom | - |
dc.identifier.issnl | 0029-5981 | - |