File Download
There are no files associated with this item.
Supplementary
-
Citations:
- Appears in Collections:
Conference Paper: A PTAS for the steiner forest problem in doubling metrics
Title | A PTAS for the steiner forest problem in doubling metrics |
---|---|
Authors | |
Issue Date | 2016 |
Citation | The 57th IEEE Annual Symposium on Foundations of Computer Science (FOCS 2016), New Brunswick, NJ., 9-11 October 2016. How to Cite? |
Abstract | We achieve a (randomized) polynomial-time approximation scheme (PTAS) for the Steiner
Forest Problem in doubling metrics. Before our work, a PTAS is given only for the Euclidean
plane in [FOCS 2008: Borradaile, Klein and Mathieu]. Our PTAS also shares similarities
with the dynamic programming for sparse instances used in [STOC 2012: Bartal, Gottlieb and
Krauthgamer] and [SODA 2016: Chan and Jiang]. However, extending previous approaches
requires overcoming several non-trivial hurdles, and we make the following technical contributions.
(1) We prove a technical lemma showing that Steiner points have to be “near” the terminals
in an optimal Steiner tree. This enables us to define a heuristic to estimate the local behavior
of the optimal solution, even though the Steiner points are unknown in advance. This lemma
also generalizes previous results in the Euclidean plane, and may be of independent interest for
related problems involving Steiner points.
(2) We develop a novel algorithmic technique known as “adaptive cells” to overcome the
difficulty of keeping track of multiple components in a solution. Our idea is based on but
significantly different from the previously proposed “uniform cells” in the FOCS 2008 paper,
whose techniques cannot be readily applied to doubling metrics. |
Persistent Identifier | http://hdl.handle.net/10722/232178 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chan, HTH | - |
dc.contributor.author | Hu, S | - |
dc.contributor.author | Jiang, S | - |
dc.date.accessioned | 2016-09-20T05:28:16Z | - |
dc.date.available | 2016-09-20T05:28:16Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | The 57th IEEE Annual Symposium on Foundations of Computer Science (FOCS 2016), New Brunswick, NJ., 9-11 October 2016. | - |
dc.identifier.uri | http://hdl.handle.net/10722/232178 | - |
dc.description.abstract | We achieve a (randomized) polynomial-time approximation scheme (PTAS) for the Steiner Forest Problem in doubling metrics. Before our work, a PTAS is given only for the Euclidean plane in [FOCS 2008: Borradaile, Klein and Mathieu]. Our PTAS also shares similarities with the dynamic programming for sparse instances used in [STOC 2012: Bartal, Gottlieb and Krauthgamer] and [SODA 2016: Chan and Jiang]. However, extending previous approaches requires overcoming several non-trivial hurdles, and we make the following technical contributions. (1) We prove a technical lemma showing that Steiner points have to be “near” the terminals in an optimal Steiner tree. This enables us to define a heuristic to estimate the local behavior of the optimal solution, even though the Steiner points are unknown in advance. This lemma also generalizes previous results in the Euclidean plane, and may be of independent interest for related problems involving Steiner points. (2) We develop a novel algorithmic technique known as “adaptive cells” to overcome the difficulty of keeping track of multiple components in a solution. Our idea is based on but significantly different from the previously proposed “uniform cells” in the FOCS 2008 paper, whose techniques cannot be readily applied to doubling metrics. | - |
dc.language | eng | - |
dc.relation.ispartof | IEEE Annual Symposium on Foundations of Computer Science, FOCS 2016 | - |
dc.title | A PTAS for the steiner forest problem in doubling metrics | - |
dc.type | Conference_Paper | - |
dc.identifier.email | Chan, HTH: hubert@cs.hku.hk | - |
dc.identifier.authority | Chan, HTH=rp01312 | - |
dc.identifier.hkuros | 264468 | - |
dc.description.other | The 57th IEEE Annual Symposium on Foundations of Computer Science (FOCS 2016), New Brunswick, NJ., 9-11 October 2016. | - |