File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Fluid-structure interaction modeling for fatigue-damage prediction in full-scale wind-turbine blades

TitleFluid-structure interaction modeling for fatigue-damage prediction in full-scale wind-turbine blades
Authors
KeywordsIGA
CX-100 blade
DDDAS
Fatigue damage
FSI
Micon 65/13M wind turbine
Issue Date2016
Citation
Journal of Applied Mechanics, Transactions ASME, 2016, v. 83, n. 6 How to Cite?
Abstract© Copyright 2016 by ASME.This work presents a collection of advanced computational methods, and their coupling, that enable prediction of fatigue-damage evolution in full-scale composite blades of wind turbines operating at realistic wind and rotor speeds. The numerical methodology involves: (1) a recently developed and validated fatigue-damage model for multilayer fiber-reinforced composites; (2) a validated coupled fluid-structure interaction (FSI) framework, wherein the 3D time-dependent aerodynamics based on the Navier-Stokes equations of incompressible flows is computed using a finite-element-based arbitrary Lagrangian-Eulerian-variational multiscale (ALE-VMS) technique, and the blade structures are modeled as rotation-free isogeometric shells; and (3) coupling of the FSI and fatigue-damage models. The coupled FSI and fatigue-damage formulations are deployed on the Micon 13M wind turbine equipped with the Sandia CX-100 blades. Damage initiation, damage progression, and eventual failure of the blades are reported.
Persistent Identifierhttp://hdl.handle.net/10722/235960
ISSN
2020 Impact Factor: 2.168
2020 SCImago Journal Rankings: 0.690
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorBazilevs, Y.-
dc.contributor.authorKorobenko, A.-
dc.contributor.authorDeng, X.-
dc.contributor.authorYan, J.-
dc.date.accessioned2016-11-10T07:11:49Z-
dc.date.available2016-11-10T07:11:49Z-
dc.date.issued2016-
dc.identifier.citationJournal of Applied Mechanics, Transactions ASME, 2016, v. 83, n. 6-
dc.identifier.issn0021-8936-
dc.identifier.urihttp://hdl.handle.net/10722/235960-
dc.description.abstract© Copyright 2016 by ASME.This work presents a collection of advanced computational methods, and their coupling, that enable prediction of fatigue-damage evolution in full-scale composite blades of wind turbines operating at realistic wind and rotor speeds. The numerical methodology involves: (1) a recently developed and validated fatigue-damage model for multilayer fiber-reinforced composites; (2) a validated coupled fluid-structure interaction (FSI) framework, wherein the 3D time-dependent aerodynamics based on the Navier-Stokes equations of incompressible flows is computed using a finite-element-based arbitrary Lagrangian-Eulerian-variational multiscale (ALE-VMS) technique, and the blade structures are modeled as rotation-free isogeometric shells; and (3) coupling of the FSI and fatigue-damage models. The coupled FSI and fatigue-damage formulations are deployed on the Micon 13M wind turbine equipped with the Sandia CX-100 blades. Damage initiation, damage progression, and eventual failure of the blades are reported.-
dc.languageeng-
dc.relation.ispartofJournal of Applied Mechanics, Transactions ASME-
dc.subjectIGA-
dc.subjectCX-100 blade-
dc.subjectDDDAS-
dc.subjectFatigue damage-
dc.subjectFSI-
dc.subjectMicon 65/13M wind turbine-
dc.titleFluid-structure interaction modeling for fatigue-damage prediction in full-scale wind-turbine blades-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1115/1.4033080-
dc.identifier.scopuseid_2-s2.0-84963831393-
dc.identifier.hkuros274985-
dc.identifier.volume83-
dc.identifier.issue6-
dc.identifier.spagenull-
dc.identifier.epagenull-
dc.identifier.eissn1528-9036-
dc.identifier.isiWOS:000378407200010-
dc.identifier.issnl0021-8936-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats