File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A GA-based optimisation model for big data analytics supporting anticipatory shipping in Retail 4.0

TitleA GA-based optimisation model for big data analytics supporting anticipatory shipping in Retail 4.0
Authors
Keywordsanticipatory shipping
association rule mining
data mining
genetic algorithms
retail supply chain
Issue Date2017
Citation
International Journal of Production Research, 2017, v. 55, p. 593-605 How to Cite?
Persistent Identifierhttp://hdl.handle.net/10722/239552
ISSN
2023 Impact Factor: 7.0
2023 SCImago Journal Rankings: 2.668
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorLee, KHC-
dc.date.accessioned2017-03-21T09:15:43Z-
dc.date.available2017-03-21T09:15:43Z-
dc.date.issued2017-
dc.identifier.citationInternational Journal of Production Research, 2017, v. 55, p. 593-605-
dc.identifier.issn0020-7543-
dc.identifier.urihttp://hdl.handle.net/10722/239552-
dc.languageeng-
dc.relation.ispartofInternational Journal of Production Research-
dc.subjectanticipatory shipping-
dc.subjectassociation rule mining-
dc.subjectdata mining-
dc.subjectgenetic algorithms-
dc.subjectretail supply chain-
dc.titleA GA-based optimisation model for big data analytics supporting anticipatory shipping in Retail 4.0-
dc.typeArticle-
dc.identifier.emailLee, KHC: leeckh@hku.hk-
dc.identifier.doi10.1080/00207543.2016.1221162-
dc.identifier.scopuseid_2-s2.0-84981234426-
dc.identifier.hkuros271528-
dc.identifier.volume55-
dc.identifier.spage593-
dc.identifier.epage605-
dc.identifier.eissn1366-588X-
dc.identifier.isiWOS:000390417200017-
dc.identifier.issnl0020-7543-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats