File Download
Supplementary

Conference Paper: The Bruinier--Funke pairing and the orthogonal complement of unary theta functions

TitleThe Bruinier--Funke pairing and the orthogonal complement of unary theta functions
Authors
Issue Date2016
Citation
Workshop on L-functions and automorphic forms, University of Heidelberg, Heidelberg, Germany, 22-26 Feberuary 2016 How to Cite?
AbstractWe describe an algorithm for computing the inner product between a holomorphic modular form and a unary theta function, in order to determine whether the form is orthogonal to unary theta functions without needing a basis of the entire space of modular forms and without needing to use linear algebra to decompose this space completely.
Persistent Identifierhttp://hdl.handle.net/10722/242356

 

DC FieldValueLanguage
dc.contributor.authorKane, BR-
dc.contributor.authorMan, SH-
dc.date.accessioned2017-07-24T01:38:41Z-
dc.date.available2017-07-24T01:38:41Z-
dc.date.issued2016-
dc.identifier.citationWorkshop on L-functions and automorphic forms, University of Heidelberg, Heidelberg, Germany, 22-26 Feberuary 2016-
dc.identifier.urihttp://hdl.handle.net/10722/242356-
dc.description.abstractWe describe an algorithm for computing the inner product between a holomorphic modular form and a unary theta function, in order to determine whether the form is orthogonal to unary theta functions without needing a basis of the entire space of modular forms and without needing to use linear algebra to decompose this space completely.-
dc.languageeng-
dc.relation.ispartofWorkshop on L-functions and automorphic forms-
dc.titleThe Bruinier--Funke pairing and the orthogonal complement of unary theta functions-
dc.typeConference_Paper-
dc.identifier.emailKane, BR: bkane@hku.hk-
dc.identifier.authorityKane, BR=rp01820-
dc.description.naturepostprint-
dc.identifier.hkuros273168-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats