File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A General Framework for Consistency of principal component analysis

TitleA General Framework for Consistency of principal component analysis
Authors
KeywordsHigh dimension low sample size
PCA
Random matrix
Spike model
Issue Date2016
PublisherJournal of Machine Learning Research. The Journal's web site is located at http://mitpress.mit.edu/jmlr
Citation
Journal of Machine Learning Research, 2016, v. 17, p. 1-34 How to Cite?
Persistent Identifierhttp://hdl.handle.net/10722/248621
ISSN
2023 Impact Factor: 4.3
2023 SCImago Journal Rankings: 2.796

 

DC FieldValueLanguage
dc.contributor.authorShen, D-
dc.contributor.authorShen, H-
dc.contributor.authorMarron, J-
dc.date.accessioned2017-10-18T08:46:02Z-
dc.date.available2017-10-18T08:46:02Z-
dc.date.issued2016-
dc.identifier.citationJournal of Machine Learning Research, 2016, v. 17, p. 1-34-
dc.identifier.issn1532-4435-
dc.identifier.urihttp://hdl.handle.net/10722/248621-
dc.languageeng-
dc.publisherJournal of Machine Learning Research. The Journal's web site is located at http://mitpress.mit.edu/jmlr-
dc.relation.ispartofJournal of Machine Learning Research-
dc.subjectHigh dimension low sample size-
dc.subjectPCA-
dc.subjectRandom matrix-
dc.subjectSpike model-
dc.titleA General Framework for Consistency of principal component analysis-
dc.typeArticle-
dc.identifier.emailShen, H: haipeng@hku.hk-
dc.identifier.authorityShen, H=rp02082-
dc.description.naturepublished_or_final_version-
dc.identifier.scopuseid_2-s2.0-84995511095-
dc.identifier.hkuros279499-
dc.identifier.volume17-
dc.identifier.spage1-
dc.identifier.epage34-
dc.publisher.placeUnited States-
dc.identifier.issnl1532-4435-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats