File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Inexact Alternating Direction Methods of Multipliers with Logarithmic-Quadratic Proximal Regularization

TitleInexact Alternating Direction Methods of Multipliers with Logarithmic-Quadratic Proximal Regularization
Authors
KeywordsLogarithmic-quadratic proximal regularization
Inexact
Variational inequality
Alternating direction method of multipliers
Convergence rate
Issue Date2013
Citation
Journal of Optimization Theory and Applications, 2013, v. 159, n. 2, p. 412-436 How to Cite?
AbstractIn the literature, it was shown recently that the Douglas-Rachford alternating direction method of multipliers can be combined with the logarithmic-quadratic proximal regularization for solving a class of variational inequalities with separable structures. This paper studies the inexact version of this combination, where the resulting subproblems are allowed to be solved approximately subject to different inexactness criteria. We prove the global convergence and establish worst-case convergence rates for the derived inexact algorithms. © 2013 Springer Science+Business Media New York.
Persistent Identifierhttp://hdl.handle.net/10722/251047
ISSN
2023 Impact Factor: 1.6
2023 SCImago Journal Rankings: 0.864
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorLi, Min-
dc.contributor.authorLiao, Li Zhi-
dc.contributor.authorYuan, Xiaoming-
dc.date.accessioned2018-02-01T01:54:25Z-
dc.date.available2018-02-01T01:54:25Z-
dc.date.issued2013-
dc.identifier.citationJournal of Optimization Theory and Applications, 2013, v. 159, n. 2, p. 412-436-
dc.identifier.issn0022-3239-
dc.identifier.urihttp://hdl.handle.net/10722/251047-
dc.description.abstractIn the literature, it was shown recently that the Douglas-Rachford alternating direction method of multipliers can be combined with the logarithmic-quadratic proximal regularization for solving a class of variational inequalities with separable structures. This paper studies the inexact version of this combination, where the resulting subproblems are allowed to be solved approximately subject to different inexactness criteria. We prove the global convergence and establish worst-case convergence rates for the derived inexact algorithms. © 2013 Springer Science+Business Media New York.-
dc.languageeng-
dc.relation.ispartofJournal of Optimization Theory and Applications-
dc.subjectLogarithmic-quadratic proximal regularization-
dc.subjectInexact-
dc.subjectVariational inequality-
dc.subjectAlternating direction method of multipliers-
dc.subjectConvergence rate-
dc.titleInexact Alternating Direction Methods of Multipliers with Logarithmic-Quadratic Proximal Regularization-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1007/s10957-013-0334-4-
dc.identifier.scopuseid_2-s2.0-84886095054-
dc.identifier.volume159-
dc.identifier.issue2-
dc.identifier.spage412-
dc.identifier.epage436-
dc.identifier.eissn1573-2878-
dc.identifier.isiWOS:000325961400007-
dc.identifier.issnl0022-3239-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats