File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1093/imanum/drt060
- Scopus: eid_2-s2.0-84922552820
- WOS: WOS:000350204800017
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: A splitting method for separable convex programming
Title | A splitting method for separable convex programming |
---|---|
Authors | |
Keywords | operator splitting methods image processing separable structure convex programming |
Issue Date | 2013 |
Citation | IMA Journal of Numerical Analysis, 2013, v. 35, n. 1, p. 394-426 How to Cite? |
Abstract | © 2014 The Authors. We propose a splitting method for solving a separable convex minimization problem with linear constraints, where the objective function is expressed as the sum of m individual functions without coupled variables. Treating the functions in the objective separately, the new method belongs to the category of operator splitting methods. We show the global convergence and estimate a worst-case convergence rate for the new method, and then illustrate its numerical efficiency by some applications. |
Persistent Identifier | http://hdl.handle.net/10722/251089 |
ISSN | 2023 Impact Factor: 2.3 2023 SCImago Journal Rankings: 1.861 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | He, Bingsheng | - |
dc.contributor.author | Tao, Min | - |
dc.contributor.author | Yuan, Xiaoming | - |
dc.date.accessioned | 2018-02-01T01:54:32Z | - |
dc.date.available | 2018-02-01T01:54:32Z | - |
dc.date.issued | 2013 | - |
dc.identifier.citation | IMA Journal of Numerical Analysis, 2013, v. 35, n. 1, p. 394-426 | - |
dc.identifier.issn | 0272-4979 | - |
dc.identifier.uri | http://hdl.handle.net/10722/251089 | - |
dc.description.abstract | © 2014 The Authors. We propose a splitting method for solving a separable convex minimization problem with linear constraints, where the objective function is expressed as the sum of m individual functions without coupled variables. Treating the functions in the objective separately, the new method belongs to the category of operator splitting methods. We show the global convergence and estimate a worst-case convergence rate for the new method, and then illustrate its numerical efficiency by some applications. | - |
dc.language | eng | - |
dc.relation.ispartof | IMA Journal of Numerical Analysis | - |
dc.subject | operator splitting methods | - |
dc.subject | image processing | - |
dc.subject | separable structure | - |
dc.subject | convex programming | - |
dc.title | A splitting method for separable convex programming | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1093/imanum/drt060 | - |
dc.identifier.scopus | eid_2-s2.0-84922552820 | - |
dc.identifier.volume | 35 | - |
dc.identifier.issue | 1 | - |
dc.identifier.spage | 394 | - |
dc.identifier.epage | 426 | - |
dc.identifier.eissn | 1464-3642 | - |
dc.identifier.isi | WOS:000350204800017 | - |
dc.identifier.issnl | 0272-4979 | - |