File Download

There are no files associated with this item.

Supplementary

Conference Paper: On structure testing for component covariance matrices of a high-dimensional mixture

TitleOn structure testing for component covariance matrices of a high-dimensional mixture
Authors
KeywordsHigh-dimensional mixture
Structure testing
Sphericity test
Large covariance matrix
Marcenko-Pastur law
Issue Date2017
PublisherAmerican Statistical Association.
Citation
Joint Statistical Meeting (JSM) 2017: Statistics: It's Essential, Baltimore, USA, 30 July-4 August 2017 How to Cite?
AbstractBy studying the family of p-dimensional scaled mixtures, this paper shows for the first time a non trivial example where the eigenvalue distribution of the corresponding sample covariance matrix does not converge to the celebrated Marcenko-Pastur law. A different and new limit is found and characterized. We also address the problem of testing whether the mixture has a spherical covariance matrix. It is shown that the traditional John's test and its recent high-dimensional extensions both fail for high-dimensional mixtures, precisely due to the different spectral limit above. In order to find a remedy, we establish a novel and general CLT for linear statistics of eigenvalues of the sample covariance matrix. A new test using this CLT is constructed afterwards for the sphericity hypothesis.
DescriptionSession 388: Random Matrices and Applications — Invited Papers
Persistent Identifierhttp://hdl.handle.net/10722/253980

 

DC FieldValueLanguage
dc.contributor.authorYao, JJ-
dc.contributor.authorLi, WM-
dc.date.accessioned2018-06-04T06:59:13Z-
dc.date.available2018-06-04T06:59:13Z-
dc.date.issued2017-
dc.identifier.citationJoint Statistical Meeting (JSM) 2017: Statistics: It's Essential, Baltimore, USA, 30 July-4 August 2017-
dc.identifier.urihttp://hdl.handle.net/10722/253980-
dc.descriptionSession 388: Random Matrices and Applications — Invited Papers -
dc.description.abstractBy studying the family of p-dimensional scaled mixtures, this paper shows for the first time a non trivial example where the eigenvalue distribution of the corresponding sample covariance matrix does not converge to the celebrated Marcenko-Pastur law. A different and new limit is found and characterized. We also address the problem of testing whether the mixture has a spherical covariance matrix. It is shown that the traditional John's test and its recent high-dimensional extensions both fail for high-dimensional mixtures, precisely due to the different spectral limit above. In order to find a remedy, we establish a novel and general CLT for linear statistics of eigenvalues of the sample covariance matrix. A new test using this CLT is constructed afterwards for the sphericity hypothesis.-
dc.languageeng-
dc.publisherAmerican Statistical Association. -
dc.relation.ispartofJoint Statistical Meeting, JSM 2017-
dc.subjectHigh-dimensional mixture-
dc.subjectStructure testing-
dc.subjectSphericity test-
dc.subjectLarge covariance matrix-
dc.subjectMarcenko-Pastur law-
dc.titleOn structure testing for component covariance matrices of a high-dimensional mixture-
dc.typeConference_Paper-
dc.identifier.emailYao, JJ: jeffyao@hku.hk-
dc.identifier.authorityYao, JJ=rp01473-
dc.identifier.hkuros278213-
dc.publisher.placeUnited States-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats