File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1007/978-1-4020-4333-8_8
- Scopus: eid_2-s2.0-34548813349
- Find via
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Book Chapter: Optical superlens
Title | Optical superlens |
---|---|
Authors | |
Issue Date | 2007 |
Publisher | Springer |
Citation | Optical superlens. In Brongersma, ML, Kik, PG (Eds.), Surface Plasmon Nanophotonics, 2007, p. 105-123. Dordrecht: Springer, 2007 How to Cite? |
Abstract | The diffraction limit has long been a fundamental barrier for optical imaging. The ability to improve the resolving power of optical systems has attracted considerable interest. This ever-growing interest is due to the enormous potential benefit it offers in diverse fields such as bio-imaging, data storage, and lithography. Significant efforts have been made to enhance optical resolution. As an earliest effort to improve the resolution, contact mask imaging was proposed and demonstrated. Immersion microscopy improves the resolution by increasing the refractive index of the surrounding medium; this method is limited by the availability of high index materials. Although scanning near-field optical microscopy (NSOM) provides subwavelength resolution, it does not project a whole image like a regular lens does. The optical information is collected by scanning a sharp tip in a point-by-point fashion near the surface which suffers from slow speed of serial scanning. It is often an "invasive" measurement that requires complicated post procedures for imaging reconstruction to remove the artifacts due to the tip-structure interaction. Recently, Pendry proposed an interesting "perfect lens theory" in which a left-handed material (LHM) is used to obtain super-resolution well below the diffraction limit. © 2007 Springer. |
Persistent Identifier | http://hdl.handle.net/10722/257303 |
ISBN | |
ISSN | 2020 SCImago Journal Rankings: 0.135 |
Series/Report no. | Springer Series in Optical Sciences ; 131 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhang, X. | - |
dc.contributor.author | Ambati, M. | - |
dc.contributor.author | Fang, N. | - |
dc.contributor.author | Lee, H. | - |
dc.contributor.author | Liu, Z. | - |
dc.contributor.author | Sun, C. | - |
dc.contributor.author | Xiong, Y. | - |
dc.date.accessioned | 2018-07-24T08:59:25Z | - |
dc.date.available | 2018-07-24T08:59:25Z | - |
dc.date.issued | 2007 | - |
dc.identifier.citation | Optical superlens. In Brongersma, ML, Kik, PG (Eds.), Surface Plasmon Nanophotonics, 2007, p. 105-123. Dordrecht: Springer, 2007 | - |
dc.identifier.isbn | 9781402043499 | - |
dc.identifier.issn | 0342-4111 | - |
dc.identifier.uri | http://hdl.handle.net/10722/257303 | - |
dc.description.abstract | The diffraction limit has long been a fundamental barrier for optical imaging. The ability to improve the resolving power of optical systems has attracted considerable interest. This ever-growing interest is due to the enormous potential benefit it offers in diverse fields such as bio-imaging, data storage, and lithography. Significant efforts have been made to enhance optical resolution. As an earliest effort to improve the resolution, contact mask imaging was proposed and demonstrated. Immersion microscopy improves the resolution by increasing the refractive index of the surrounding medium; this method is limited by the availability of high index materials. Although scanning near-field optical microscopy (NSOM) provides subwavelength resolution, it does not project a whole image like a regular lens does. The optical information is collected by scanning a sharp tip in a point-by-point fashion near the surface which suffers from slow speed of serial scanning. It is often an "invasive" measurement that requires complicated post procedures for imaging reconstruction to remove the artifacts due to the tip-structure interaction. Recently, Pendry proposed an interesting "perfect lens theory" in which a left-handed material (LHM) is used to obtain super-resolution well below the diffraction limit. © 2007 Springer. | - |
dc.language | eng | - |
dc.publisher | Springer | - |
dc.relation.ispartof | Surface Plasmon Nanophotonics | - |
dc.relation.ispartofseries | Springer Series in Optical Sciences ; 131 | - |
dc.title | Optical superlens | - |
dc.type | Book_Chapter | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1007/978-1-4020-4333-8_8 | - |
dc.identifier.scopus | eid_2-s2.0-34548813349 | - |
dc.identifier.spage | 105 | - |
dc.identifier.epage | 123 | - |
dc.identifier.eissn | 1556-1534 | - |
dc.publisher.place | Dordrecht | - |