File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.jprot.2018.07.014
- Scopus: eid_2-s2.0-85050889875
- WOS: WOS:000444789800015
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: SWATH-MS quantitative proteomic investigation of nitrogen starvation in Arabidopsis reveals new aspects of plant nitrogen stress responses
Title | SWATH-MS quantitative proteomic investigation of nitrogen starvation in Arabidopsis reveals new aspects of plant nitrogen stress responses |
---|---|
Authors | |
Keywords | 14-3-3 Arabidopsis Nitrogen stress response Phospholipid SWATH-MS |
Issue Date | 2018 |
Publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/wps/find/journaldescription.cws_home/713351/description#description |
Citation | Journal of Proteomics, 2018, v. 181, p. 161-170 How to Cite? |
Abstract | Nitrogen is an essential macronutrient for plant growth and crop productivity. The aim of this work was to further investigate the molecular events during plant adaptation to nitrogen stress. Here, we present a SWATH-MS (Sequential window acquisition of all theoretical mass spectra)-based quantitative approach to detect proteome changes in Arabidopsis seedlings following nitrogen starvation. In total, 736 proteins of diverse functions were determined to show significant abundance changes between nitrogen-supplied and nitrogen-starved Arabidopsis seedlings. Functional categorization revealed the involvement of nitrogen stress-responsive proteins in biological processes including amino acid and protein metabolism, photosynthesis, lipid metabolism and glucosinolate metabolism. Subsequent phospholipid profiling of Arabidopsis seedlings showed changes in phospholipid composition that may enhance membrane fluidity as a response to nitrogen starvation. Moreover, an Arabidopsis grf6 T-DNA insertion mutant was found to have a nitrogen stress-sensitive phenotype. GRF6 is a 14-3-3 protein with elevated abundance upon nitrogen starvation and it may function as a positive regulator during nitrogen stress adaptation. |
Persistent Identifier | http://hdl.handle.net/10722/259937 |
ISSN | 2023 Impact Factor: 2.8 2023 SCImago Journal Rankings: 0.742 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhu, FY | - |
dc.contributor.author | Chen, MX | - |
dc.contributor.author | Chan, WL | - |
dc.contributor.author | Yang, F | - |
dc.contributor.author | Tian, Y | - |
dc.contributor.author | Song, T | - |
dc.contributor.author | Xie, LJ | - |
dc.contributor.author | Zhou, Y | - |
dc.contributor.author | Xiao, S | - |
dc.contributor.author | Zhang, J | - |
dc.contributor.author | Lo, CSC | - |
dc.date.accessioned | 2018-09-03T04:18:02Z | - |
dc.date.available | 2018-09-03T04:18:02Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Journal of Proteomics, 2018, v. 181, p. 161-170 | - |
dc.identifier.issn | 1874-3919 | - |
dc.identifier.uri | http://hdl.handle.net/10722/259937 | - |
dc.description.abstract | Nitrogen is an essential macronutrient for plant growth and crop productivity. The aim of this work was to further investigate the molecular events during plant adaptation to nitrogen stress. Here, we present a SWATH-MS (Sequential window acquisition of all theoretical mass spectra)-based quantitative approach to detect proteome changes in Arabidopsis seedlings following nitrogen starvation. In total, 736 proteins of diverse functions were determined to show significant abundance changes between nitrogen-supplied and nitrogen-starved Arabidopsis seedlings. Functional categorization revealed the involvement of nitrogen stress-responsive proteins in biological processes including amino acid and protein metabolism, photosynthesis, lipid metabolism and glucosinolate metabolism. Subsequent phospholipid profiling of Arabidopsis seedlings showed changes in phospholipid composition that may enhance membrane fluidity as a response to nitrogen starvation. Moreover, an Arabidopsis grf6 T-DNA insertion mutant was found to have a nitrogen stress-sensitive phenotype. GRF6 is a 14-3-3 protein with elevated abundance upon nitrogen starvation and it may function as a positive regulator during nitrogen stress adaptation. | - |
dc.language | eng | - |
dc.publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/wps/find/journaldescription.cws_home/713351/description#description | - |
dc.relation.ispartof | Journal of Proteomics | - |
dc.subject | 14-3-3 | - |
dc.subject | Arabidopsis | - |
dc.subject | Nitrogen stress response | - |
dc.subject | Phospholipid | - |
dc.subject | SWATH-MS | - |
dc.title | SWATH-MS quantitative proteomic investigation of nitrogen starvation in Arabidopsis reveals new aspects of plant nitrogen stress responses | - |
dc.type | Article | - |
dc.identifier.email | Lo, CSC: clivelo@hku.hk | - |
dc.identifier.authority | Lo, CSC=rp00751 | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1016/j.jprot.2018.07.014 | - |
dc.identifier.scopus | eid_2-s2.0-85050889875 | - |
dc.identifier.hkuros | 288681 | - |
dc.identifier.hkuros | 294420 | - |
dc.identifier.volume | 181 | - |
dc.identifier.spage | 161 | - |
dc.identifier.epage | 170 | - |
dc.identifier.isi | WOS:000444789800015 | - |
dc.publisher.place | Netherlands | - |
dc.identifier.issnl | 1874-3919 | - |