Links for fulltext
     (May Require Subscription)
Supplementary

Article: Cumulative lifetime maternal stress and epigenome-wide placental DNA methylation in the PRISM cohort

TitleCumulative lifetime maternal stress and epigenome-wide placental DNA methylation in the PRISM cohort
Authors
KeywordsPRISM cohort
endocytosis
DNA methylation
placenta
metabolism
maternal stress
Issue Date2018
PublisherTaylor & Francis Inc. The Journal's web site is located at http://www.tandfonline.com/kepi
Citation
Epigenetics, 2018, v. 13 n. 6, p. 665-681 How to Cite?
Abstract© 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group. Evolving evidence links maternal stress exposure to changes in placental DNA methylation of specific genes regulating placental function that may have implications for the programming of a host of chronic disorders. Few studies have implemented an epigenome-wide approach. Using the Infinium HumanMethylation450 BeadChip (450K), we investigated epigenome-wide placental DNA methylation in relation to maternal experiences of traumatic and non-traumatic stressors over her lifetime assessed using the Life Stressor Checklist-Revised (LSC-R) survey (n = 207). We found differential DNA methylation at epigenome-wide statistical significance (FDR = 0.05) for 112 CpGs. Additionally, we observed three clusters that exhibited differential methylation in response to high maternal lifetime stress. Enrichment analyses, conducted at an FDR = 0.20, revealed lysine degradation to be the most significant pathway associated with maternal lifetimes stress exposure. Targeted enrichment analyses of the three largest clusters of probes, identified using the gap statistic, were enriched for genes associated with endocytosis (i.e., SMAP1, ANKFY1), tight junctions (i.e., EPB41L4B), and metabolic pathways (i.e., INPP5E, EEF1B2). These pathways, also identified in the top 10 KEGG pathways associated with maternal lifetime stress exposure, play important roles in multiple physiological functions necessary for proper fetal development. Further, two genes were identified to exhibit multiple probes associated with maternal lifetime stress (i.e., ANKFY1, TM6SF1). The methylation status of the probes belonging to each cluster and/or genes exhibiting multiple hits, may play a role in the pathogenesis of adverse health outcomes in children born to mothers with increased lifetime stress exposure.
Persistent Identifierhttp://hdl.handle.net/10722/260267
ISSN
2023 Impact Factor: 2.9
2023 SCImago Journal Rankings: 1.149
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorBrunst, Kelly J.-
dc.contributor.authorTignor, Nicole-
dc.contributor.authorJust, Allan-
dc.contributor.authorLiu, Zhonghua-
dc.contributor.authorLin, Xihong-
dc.contributor.authorHacker, Michele R.-
dc.contributor.authorBosquet Enlow, Michelle-
dc.contributor.authorWright, Robert O.-
dc.contributor.authorWang, Pei-
dc.contributor.authorBaccarelli, Andrea A.-
dc.contributor.authorWright, Rosalind J.-
dc.date.accessioned2018-09-12T02:00:57Z-
dc.date.available2018-09-12T02:00:57Z-
dc.date.issued2018-
dc.identifier.citationEpigenetics, 2018, v. 13 n. 6, p. 665-681-
dc.identifier.issn1559-2294-
dc.identifier.urihttp://hdl.handle.net/10722/260267-
dc.description.abstract© 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group. Evolving evidence links maternal stress exposure to changes in placental DNA methylation of specific genes regulating placental function that may have implications for the programming of a host of chronic disorders. Few studies have implemented an epigenome-wide approach. Using the Infinium HumanMethylation450 BeadChip (450K), we investigated epigenome-wide placental DNA methylation in relation to maternal experiences of traumatic and non-traumatic stressors over her lifetime assessed using the Life Stressor Checklist-Revised (LSC-R) survey (n = 207). We found differential DNA methylation at epigenome-wide statistical significance (FDR = 0.05) for 112 CpGs. Additionally, we observed three clusters that exhibited differential methylation in response to high maternal lifetime stress. Enrichment analyses, conducted at an FDR = 0.20, revealed lysine degradation to be the most significant pathway associated with maternal lifetimes stress exposure. Targeted enrichment analyses of the three largest clusters of probes, identified using the gap statistic, were enriched for genes associated with endocytosis (i.e., SMAP1, ANKFY1), tight junctions (i.e., EPB41L4B), and metabolic pathways (i.e., INPP5E, EEF1B2). These pathways, also identified in the top 10 KEGG pathways associated with maternal lifetime stress exposure, play important roles in multiple physiological functions necessary for proper fetal development. Further, two genes were identified to exhibit multiple probes associated with maternal lifetime stress (i.e., ANKFY1, TM6SF1). The methylation status of the probes belonging to each cluster and/or genes exhibiting multiple hits, may play a role in the pathogenesis of adverse health outcomes in children born to mothers with increased lifetime stress exposure.-
dc.languageeng-
dc.publisherTaylor & Francis Inc. The Journal's web site is located at http://www.tandfonline.com/kepi-
dc.relation.ispartofEpigenetics-
dc.rightsThis is an Accepted Manuscript of an article published by Taylor & Francis in Epigenetics, 2018, v. 13 n. 6, p. 665-681 on : 15 Aug 2018, available online: http://www.tandfonline.com/10.1080/15592294.2018.1497387-
dc.subjectPRISM cohort-
dc.subjectendocytosis-
dc.subjectDNA methylation-
dc.subjectplacenta-
dc.subjectmetabolism-
dc.subjectmaternal stress-
dc.titleCumulative lifetime maternal stress and epigenome-wide placental DNA methylation in the PRISM cohort-
dc.typeArticle-
dc.description.naturepostprint-
dc.identifier.doi10.1080/15592294.2018.1497387-
dc.identifier.scopuseid_2-s2.0-85051828497-
dc.identifier.hkuros294009-
dc.identifier.volume13-
dc.identifier.issue6-
dc.identifier.spage665-
dc.identifier.epage681-
dc.identifier.eissn1559-2308-
dc.identifier.isiWOS:000443868400007-
dc.publisher.placeUnited States-
dc.identifier.issnl1559-2294-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats