File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Comparative analysis of metazoan chromatin organization

TitleComparative analysis of metazoan chromatin organization
Authors
Issue Date2014
Citation
Nature, 2014, v. 512, n. 7515, p. 449-452 How to Cite?
AbstractGenome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal 'arms', and centromeres distributed along their lengths. To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function. © 2014 Macmillan Publishers Limited.
Persistent Identifierhttp://hdl.handle.net/10722/262657
ISSN
2021 Impact Factor: 69.504
2020 SCImago Journal Rankings: 15.993
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorHo, Joshua W.K.-
dc.contributor.authorJung, Youngsook L.-
dc.contributor.authorLiu, Tao-
dc.contributor.authorAlver, Burak H.-
dc.contributor.authorLee, Soohyun-
dc.contributor.authorIkegami, Kohta-
dc.contributor.authorSohn, Kyung Ah-
dc.contributor.authorMinoda, Aki-
dc.contributor.authorTolstorukov, Michael Y.-
dc.contributor.authorAppert, Alex-
dc.contributor.authorParker, Stephen C.J.-
dc.contributor.authorGu, Tingting-
dc.contributor.authorKundaje, Anshul-
dc.contributor.authorRiddle, Nicole C.-
dc.contributor.authorBishop, Eric-
dc.contributor.authorEgelhofer, Thea A.-
dc.contributor.authorHu, Sheng'En Shawn-
dc.contributor.authorAlekseyenko, Artyom A.-
dc.contributor.authorRechtsteiner, Andreas-
dc.contributor.authorAsker, Dalal-
dc.contributor.authorBelsky, Jason A.-
dc.contributor.authorBowman, Sarah K.-
dc.contributor.authorChen, Q. Brent-
dc.contributor.authorChen, Ron A.J.-
dc.contributor.authorDay, Daniel S.-
dc.contributor.authorDong, Yan-
dc.contributor.authorDose, Andrea C.-
dc.contributor.authorDuan, Xikun-
dc.contributor.authorEpstein, Charles B.-
dc.contributor.authorErcan, Sevinc-
dc.contributor.authorFeingold, Elise A.-
dc.contributor.authorFerrari, Francesco-
dc.contributor.authorGarrigues, Jacob M.-
dc.contributor.authorGehlenborg, Nils-
dc.contributor.authorGood, Peter J.-
dc.contributor.authorHaseley, Psalm-
dc.contributor.authorHe, Daniel-
dc.contributor.authorHerrmann, Moritz-
dc.contributor.authorHoffman, Michael M.-
dc.contributor.authorJeffers, Tess E.-
dc.contributor.authorKharchenko, Peter V.-
dc.contributor.authorKolasinska-Zwierz, Paulina-
dc.contributor.authorKotwaliwale, Chitra V.-
dc.contributor.authorKumar, Nischay-
dc.contributor.authorLangley, Sasha A.-
dc.contributor.authorLarschan, Erica N.-
dc.contributor.authorLatorre, Isabel-
dc.contributor.authorLibbrecht, Maxwell W.-
dc.contributor.authorLin, Xueqiu-
dc.contributor.authorPark, Richard-
dc.contributor.authorPazin, Michael J.-
dc.contributor.authorPham, Hoang N.-
dc.contributor.authorPlachetka, Annette-
dc.contributor.authorQin, Bo-
dc.contributor.authorSchwartz, Yuri B.-
dc.contributor.authorShoresh, Noam-
dc.contributor.authorStempor, Przemyslaw-
dc.contributor.authorVielle, Anne-
dc.contributor.authorWang, Chengyang-
dc.contributor.authorWhittle, Christina M.-
dc.contributor.authorXue, Huiling-
dc.contributor.authorKingston, Robert E.-
dc.contributor.authorKim, Ju Han-
dc.contributor.authorBernstein, Bradley E.-
dc.date.accessioned2018-10-08T02:46:39Z-
dc.date.available2018-10-08T02:46:39Z-
dc.date.issued2014-
dc.identifier.citationNature, 2014, v. 512, n. 7515, p. 449-452-
dc.identifier.issn0028-0836-
dc.identifier.urihttp://hdl.handle.net/10722/262657-
dc.description.abstractGenome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal 'arms', and centromeres distributed along their lengths. To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function. © 2014 Macmillan Publishers Limited.-
dc.languageeng-
dc.relation.ispartofNature-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.titleComparative analysis of metazoan chromatin organization-
dc.typeArticle-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1038/nature13415-
dc.identifier.pmid25164756-
dc.identifier.scopuseid_2-s2.0-84907420615-
dc.identifier.volume512-
dc.identifier.issue7515-
dc.identifier.spage449-
dc.identifier.epage452-
dc.identifier.eissn1476-4687-
dc.identifier.isiWOS:000340840600038-
dc.identifier.issnl0028-0836-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats