File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Modeling Dynamics of Colloidal Fouling of RO/NF Membranes with A Novel Collision-Attachment Approach

TitleModeling Dynamics of Colloidal Fouling of RO/NF Membranes with A Novel Collision-Attachment Approach
Authors
Issue Date2018
PublisherAmerican Chemical Society. The Journal's web site is located at http://pubs.acs.org/journal/esthag
Citation
Environmental Science & Technology, 2018, v. 52 n. 3, p. 1471-1478 How to Cite?
AbstractWe report a novel collision-attachment approach for modeling the dynamics of colloidal fouling. The model treats fouling as a two-step process: colloidal particles colliding with a membrane surface followed by their attachment onto the surface. An attachment coefficient is adopted to describe the probability of successful foulant attachment for any given collision event, the value of which can be determined by the classical Boltzmann distribution. Our model shows excellent agreement with experimental data in terms of both the kinetics of flux decline and foulant mass deposition. Modeling results reveal the critical roles of water flux and energy barrier in governing colloidal fouling. Greater water flux or lower energy barrier can lead to a collision-controlled condition, where severe fouling occurs and nearly all collision events lead to successful foulant attachment. On the contrary, fouling is increasingly controlled by the probability of successful attachment at lower water flux and/or greater energy barrier. Our model provides deep insights into the various mechanisms governing the dynamics of colloidal fouling (i.e., concentration polarization, collision, and attachment) and the self-limiting fouling behavior under constant-pressure mode. © 2018 American Chemical Society.
Persistent Identifierhttp://hdl.handle.net/10722/264041
ISSN
2023 Impact Factor: 10.8
2023 SCImago Journal Rankings: 3.516
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorLiu, J-
dc.contributor.authorWang, Z-
dc.contributor.authorTang, C-
dc.contributor.authorLeckie, JO-
dc.date.accessioned2018-10-22T07:48:35Z-
dc.date.available2018-10-22T07:48:35Z-
dc.date.issued2018-
dc.identifier.citationEnvironmental Science & Technology, 2018, v. 52 n. 3, p. 1471-1478-
dc.identifier.issn0013-936X-
dc.identifier.urihttp://hdl.handle.net/10722/264041-
dc.description.abstractWe report a novel collision-attachment approach for modeling the dynamics of colloidal fouling. The model treats fouling as a two-step process: colloidal particles colliding with a membrane surface followed by their attachment onto the surface. An attachment coefficient is adopted to describe the probability of successful foulant attachment for any given collision event, the value of which can be determined by the classical Boltzmann distribution. Our model shows excellent agreement with experimental data in terms of both the kinetics of flux decline and foulant mass deposition. Modeling results reveal the critical roles of water flux and energy barrier in governing colloidal fouling. Greater water flux or lower energy barrier can lead to a collision-controlled condition, where severe fouling occurs and nearly all collision events lead to successful foulant attachment. On the contrary, fouling is increasingly controlled by the probability of successful attachment at lower water flux and/or greater energy barrier. Our model provides deep insights into the various mechanisms governing the dynamics of colloidal fouling (i.e., concentration polarization, collision, and attachment) and the self-limiting fouling behavior under constant-pressure mode. © 2018 American Chemical Society.-
dc.languageeng-
dc.publisherAmerican Chemical Society. The Journal's web site is located at http://pubs.acs.org/journal/esthag-
dc.relation.ispartofEnvironmental Science & Technology-
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in Environmental Science & Technology, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.est.7b05598-
dc.titleModeling Dynamics of Colloidal Fouling of RO/NF Membranes with A Novel Collision-Attachment Approach-
dc.typeArticle-
dc.identifier.emailTang, C: tangc@hku.hk-
dc.identifier.authorityTang, C=rp01765-
dc.description.naturepostprint-
dc.identifier.doi10.1021/acs.est.7b05598-
dc.identifier.pmid29313680-
dc.identifier.scopuseid_2-s2.0-85041515470-
dc.identifier.hkuros295721-
dc.identifier.volume52-
dc.identifier.issue3-
dc.identifier.spage1471-
dc.identifier.epage1478-
dc.identifier.isiWOS:000424851700061-
dc.publisher.placeUnited States-
dc.identifier.issnl0013-936X-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats