File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Seasonal variability of multiple leaf traits captured by leaf spectroscopy at two temperate deciduous forests

TitleSeasonal variability of multiple leaf traits captured by leaf spectroscopy at two temperate deciduous forests
Authors
KeywordsPhenology
Sun and shaded leaves
Partial least square regression (PLSR)
Nitrogen
Leaf physiology
Leaf mass per area
Foliar chemistry
Chlorophyll
Carotenoids
Carbon cycle
Issue Date2016
Citation
Remote Sensing of Environment, 2016, v. 179, p. 1-12 How to Cite?
Abstract© 2016 Elsevier Inc. Understanding the temporal patterns of leaf traits is critical in determining the seasonality and magnitude of terrestrial carbon, water, and energy fluxes. However, we lack robust and efficient ways to monitor the temporal dynamics of leaf traits. Here we assessed the potential of leaf spectroscopy to predict and monitor leaf traits across their entire life cycle at different forest sites and light environments (sunlit vs. shaded) using a weekly sampled dataset across the entire growing season at two temperate deciduous forests. The dataset includes field measured leaf-level directional-hemispherical reflectance/transmittance together with seven important leaf traits [total chlorophyll (chlorophyll a and b), carotenoids, mass-based nitrogen concentration (Nmass), mass-based carbon concentration (Cmass), and leaf mass per area (LMA)]. All leaf traits varied significantly throughout the growing season, and displayed trait-specific temporal patterns. We used a Partial Least Square Regression (PLSR) modeling approach to estimate leaf traits from spectra, and found that PLSR was able to capture the variability across time, sites, and light environments of all leaf traits investigated (R2 = 0.6-0.8 for temporal variability; R2 = 0.3-0.7 for cross-site variability; R2 = 0.4-0.8 for variability from light environments). We also tested alternative field sampling designs and found that for most leaf traits, biweekly leaf sampling throughout the growing season enabled accurate characterization of the seasonal patterns. Compared with the estimation of foliar pigments, the performance of Nmass, Cmass and LMA PLSR models improved more significantly with sampling frequency. Our results demonstrate that leaf spectra-trait relationships vary with time, and thus tracking the seasonality of leaf traits requires statistical models calibrated with data sampled throughout the growing season. Our results have broad implications for future research that use vegetation spectra to infer leaf traits at different growing stages.
Persistent Identifierhttp://hdl.handle.net/10722/267030
ISSN
2023 Impact Factor: 11.1
2023 SCImago Journal Rankings: 4.310
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorYang, Xi-
dc.contributor.authorTang, Jianwu-
dc.contributor.authorMustard, John F.-
dc.contributor.authorWu, Jin-
dc.contributor.authorZhao, Kaiguang-
dc.contributor.authorSerbin, Shawn-
dc.contributor.authorLee, Jung Eun-
dc.date.accessioned2019-01-31T07:20:18Z-
dc.date.available2019-01-31T07:20:18Z-
dc.date.issued2016-
dc.identifier.citationRemote Sensing of Environment, 2016, v. 179, p. 1-12-
dc.identifier.issn0034-4257-
dc.identifier.urihttp://hdl.handle.net/10722/267030-
dc.description.abstract© 2016 Elsevier Inc. Understanding the temporal patterns of leaf traits is critical in determining the seasonality and magnitude of terrestrial carbon, water, and energy fluxes. However, we lack robust and efficient ways to monitor the temporal dynamics of leaf traits. Here we assessed the potential of leaf spectroscopy to predict and monitor leaf traits across their entire life cycle at different forest sites and light environments (sunlit vs. shaded) using a weekly sampled dataset across the entire growing season at two temperate deciduous forests. The dataset includes field measured leaf-level directional-hemispherical reflectance/transmittance together with seven important leaf traits [total chlorophyll (chlorophyll a and b), carotenoids, mass-based nitrogen concentration (Nmass), mass-based carbon concentration (Cmass), and leaf mass per area (LMA)]. All leaf traits varied significantly throughout the growing season, and displayed trait-specific temporal patterns. We used a Partial Least Square Regression (PLSR) modeling approach to estimate leaf traits from spectra, and found that PLSR was able to capture the variability across time, sites, and light environments of all leaf traits investigated (R2 = 0.6-0.8 for temporal variability; R2 = 0.3-0.7 for cross-site variability; R2 = 0.4-0.8 for variability from light environments). We also tested alternative field sampling designs and found that for most leaf traits, biweekly leaf sampling throughout the growing season enabled accurate characterization of the seasonal patterns. Compared with the estimation of foliar pigments, the performance of Nmass, Cmass and LMA PLSR models improved more significantly with sampling frequency. Our results demonstrate that leaf spectra-trait relationships vary with time, and thus tracking the seasonality of leaf traits requires statistical models calibrated with data sampled throughout the growing season. Our results have broad implications for future research that use vegetation spectra to infer leaf traits at different growing stages.-
dc.languageeng-
dc.relation.ispartofRemote Sensing of Environment-
dc.subjectPhenology-
dc.subjectSun and shaded leaves-
dc.subjectPartial least square regression (PLSR)-
dc.subjectNitrogen-
dc.subjectLeaf physiology-
dc.subjectLeaf mass per area-
dc.subjectFoliar chemistry-
dc.subjectChlorophyll-
dc.subjectCarotenoids-
dc.subjectCarbon cycle-
dc.titleSeasonal variability of multiple leaf traits captured by leaf spectroscopy at two temperate deciduous forests-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/j.rse.2016.03.026-
dc.identifier.scopuseid_2-s2.0-84961932757-
dc.identifier.volume179-
dc.identifier.spage1-
dc.identifier.epage12-
dc.identifier.isiWOS:000375506100001-
dc.identifier.issnl0034-4257-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats