File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1002/2013JD021238
- Scopus: eid_2-s2.0-84903288903
- WOS: WOS:000337974500038
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Global emissions of terpenoid VOCs from terrestrial vegetation in the last millennium
Title | Global emissions of terpenoid VOCs from terrestrial vegetation in the last millennium |
---|---|
Authors | |
Issue Date | 2014 |
Citation | Journal of Geophysical Research, 2014, v. 119, n. 11, p. 6867-6885 How to Cite? |
Abstract | © 2014. The Authors. We investigated the millennial variability (1000 A.D.–2000 A.D.) of global biogenic volatile organic compound (BVOC) emissions by using two independent numerical models: The Model of Emissions of Gases and Aerosols from Nature (MEGAN), for isoprene, monoterpene, and sesquiterpene, and Lund-Potsdam-Jena-General Ecosystem Simulator (LPJ-GUESS), for isoprene and monoterpenes. We found the millennial trends of global isoprene emissions to be mostly affected by land cover and atmospheric carbon dioxide changes, whereas monoterpene and sesquiterpene emission trends were dominated by temperature change. Isoprene emissions declined substantially in regions with large and rapid land cover change. In addition, isoprene emission sensitivity to drought proved to have significant short-term global effects. By the end of the past millennium MEGAN isoprene emissions were 634 TgC yr−1 (13% and 19% less than during 1750–1850 and 1000–1200, respectively), and LPJ-GUESS emissions were 323 TgC yr−1 (15% and 20% less than during 1750–1850 and 1000–1200, respectively). Monoterpene emissions were 89 TgC yr−1 (10% and 6% higher than during 1750–1850 and 1000–1200, respectively) in MEGAN, and 24 TgC yr−1 (2% higher and 5% less than during 1750–1850 and 1000–1200, respectively) in LPJ-GUESS. MEGAN sesquiterpene emissions were 36 TgC yr−1 (10% and 4% higher than during 1750–1850 and 1000–1200, respectively). Although both models capture similar emission trends, the magnitude of the emissions are different. This highlights the importance of building better constraints on VOC emissions from terrestrial vegetation. |
Persistent Identifier | http://hdl.handle.net/10722/268618 |
ISSN | 2015 Impact Factor: 3.318 2020 SCImago Journal Rankings: 1.670 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Acosta Navarro, J. C. | - |
dc.contributor.author | Smolander, S. | - |
dc.contributor.author | Struthers, H. | - |
dc.contributor.author | Zorita, E. | - |
dc.contributor.author | Ekman, A. M.L. | - |
dc.contributor.author | Kaplan, J. O. | - |
dc.contributor.author | Guenther, A. | - |
dc.contributor.author | Arneth, A. | - |
dc.contributor.author | Riipinen, I. | - |
dc.date.accessioned | 2019-03-25T08:00:13Z | - |
dc.date.available | 2019-03-25T08:00:13Z | - |
dc.date.issued | 2014 | - |
dc.identifier.citation | Journal of Geophysical Research, 2014, v. 119, n. 11, p. 6867-6885 | - |
dc.identifier.issn | 0148-0227 | - |
dc.identifier.uri | http://hdl.handle.net/10722/268618 | - |
dc.description.abstract | © 2014. The Authors. We investigated the millennial variability (1000 A.D.–2000 A.D.) of global biogenic volatile organic compound (BVOC) emissions by using two independent numerical models: The Model of Emissions of Gases and Aerosols from Nature (MEGAN), for isoprene, monoterpene, and sesquiterpene, and Lund-Potsdam-Jena-General Ecosystem Simulator (LPJ-GUESS), for isoprene and monoterpenes. We found the millennial trends of global isoprene emissions to be mostly affected by land cover and atmospheric carbon dioxide changes, whereas monoterpene and sesquiterpene emission trends were dominated by temperature change. Isoprene emissions declined substantially in regions with large and rapid land cover change. In addition, isoprene emission sensitivity to drought proved to have significant short-term global effects. By the end of the past millennium MEGAN isoprene emissions were 634 TgC yr−1 (13% and 19% less than during 1750–1850 and 1000–1200, respectively), and LPJ-GUESS emissions were 323 TgC yr−1 (15% and 20% less than during 1750–1850 and 1000–1200, respectively). Monoterpene emissions were 89 TgC yr−1 (10% and 6% higher than during 1750–1850 and 1000–1200, respectively) in MEGAN, and 24 TgC yr−1 (2% higher and 5% less than during 1750–1850 and 1000–1200, respectively) in LPJ-GUESS. MEGAN sesquiterpene emissions were 36 TgC yr−1 (10% and 4% higher than during 1750–1850 and 1000–1200, respectively). Although both models capture similar emission trends, the magnitude of the emissions are different. This highlights the importance of building better constraints on VOC emissions from terrestrial vegetation. | - |
dc.language | eng | - |
dc.relation.ispartof | Journal of Geophysical Research | - |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.title | Global emissions of terpenoid VOCs from terrestrial vegetation in the last millennium | - |
dc.type | Article | - |
dc.description.nature | published_or_final_version | - |
dc.identifier.doi | 10.1002/2013JD021238 | - |
dc.identifier.scopus | eid_2-s2.0-84903288903 | - |
dc.identifier.volume | 119 | - |
dc.identifier.issue | 11 | - |
dc.identifier.spage | 6867 | - |
dc.identifier.epage | 6885 | - |
dc.identifier.eissn | 2156-2202 | - |
dc.identifier.isi | WOS:000337974500038 | - |
dc.identifier.issnl | 0148-0227 | - |