File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/B978-0-12-809633-8.20212-4
- Scopus: eid_2-s2.0-85079738921
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Book Chapter: Expression Clustering
Title | Expression Clustering |
---|---|
Authors | |
Keywords | Clustering Dimensionality reduction Feature selection Gene expression DBSCAN |
Issue Date | 2019 |
Publisher | Elsevier |
Citation | Expression Clustering. In Ranganathan, S (Editors-in-Chief), Bruno Gaeta (Eds.), Encyclopedia of Bioinformatics and Computational Biology, v. 2, p. 388-395. Amsterdam: Elsevier, 2019 How to Cite? |
Abstract | Clustering of genes and samples is a powerful means to discover biological patterns within a gene expression data set. Clustering of genes enables discovery of co-expressed gene modules, which is useful in revealing co-regulated genes. Clustering of samples enables discovery of cell types, patient groupings, and developmental trajectories of cells. A variety of clustering algorithms and software packages have been developed for gene expression clustering. This article aims to provide an overview of key clustering methods, and demonstrate their practical applications in bioinformatics. |
Persistent Identifier | http://hdl.handle.net/10722/271382 |
ISBN |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ye, X | - |
dc.contributor.author | Ho, JWK | - |
dc.date.accessioned | 2019-06-24T01:08:48Z | - |
dc.date.available | 2019-06-24T01:08:48Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Expression Clustering. In Ranganathan, S (Editors-in-Chief), Bruno Gaeta (Eds.), Encyclopedia of Bioinformatics and Computational Biology, v. 2, p. 388-395. Amsterdam: Elsevier, 2019 | - |
dc.identifier.isbn | 9780128114322 | - |
dc.identifier.uri | http://hdl.handle.net/10722/271382 | - |
dc.description.abstract | Clustering of genes and samples is a powerful means to discover biological patterns within a gene expression data set. Clustering of genes enables discovery of co-expressed gene modules, which is useful in revealing co-regulated genes. Clustering of samples enables discovery of cell types, patient groupings, and developmental trajectories of cells. A variety of clustering algorithms and software packages have been developed for gene expression clustering. This article aims to provide an overview of key clustering methods, and demonstrate their practical applications in bioinformatics. | - |
dc.language | eng | - |
dc.publisher | Elsevier | - |
dc.relation.ispartof | Encyclopedia of Bioinformatics and Computational Biology | - |
dc.subject | Clustering | - |
dc.subject | Dimensionality reduction | - |
dc.subject | Feature selection | - |
dc.subject | Gene expression | - |
dc.subject | DBSCAN | - |
dc.title | Expression Clustering | - |
dc.type | Book_Chapter | - |
dc.identifier.email | Ho, JWK: jwkho@hku.hk | - |
dc.identifier.authority | Ho, JWK=rp02436 | - |
dc.identifier.doi | 10.1016/B978-0-12-809633-8.20212-4 | - |
dc.identifier.scopus | eid_2-s2.0-85079738921 | - |
dc.identifier.hkuros | 298179 | - |
dc.identifier.volume | 2 | - |
dc.identifier.spage | 388 | - |
dc.identifier.epage | 395 | - |
dc.publisher.place | Amsterdam | - |