File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Book Chapter: Expression Clustering

TitleExpression Clustering
Authors
KeywordsClustering
Dimensionality reduction
Feature selection
Gene expression
DBSCAN
Issue Date2019
PublisherElsevier
Citation
Expression Clustering. In Ranganathan, S (Editors-in-Chief), Bruno Gaeta (Eds.), Encyclopedia of Bioinformatics and Computational Biology, v. 2, p. 388-395. Amsterdam: Elsevier, 2019 How to Cite?
AbstractClustering of genes and samples is a powerful means to discover biological patterns within a gene expression data set. Clustering of genes enables discovery of co-expressed gene modules, which is useful in revealing co-regulated genes. Clustering of samples enables discovery of cell types, patient groupings, and developmental trajectories of cells. A variety of clustering algorithms and software packages have been developed for gene expression clustering. This article aims to provide an overview of key clustering methods, and demonstrate their practical applications in bioinformatics.
Persistent Identifierhttp://hdl.handle.net/10722/271382
ISBN

 

DC FieldValueLanguage
dc.contributor.authorYe, X-
dc.contributor.authorHo, JWK-
dc.date.accessioned2019-06-24T01:08:48Z-
dc.date.available2019-06-24T01:08:48Z-
dc.date.issued2019-
dc.identifier.citationExpression Clustering. In Ranganathan, S (Editors-in-Chief), Bruno Gaeta (Eds.), Encyclopedia of Bioinformatics and Computational Biology, v. 2, p. 388-395. Amsterdam: Elsevier, 2019-
dc.identifier.isbn9780128114322-
dc.identifier.urihttp://hdl.handle.net/10722/271382-
dc.description.abstractClustering of genes and samples is a powerful means to discover biological patterns within a gene expression data set. Clustering of genes enables discovery of co-expressed gene modules, which is useful in revealing co-regulated genes. Clustering of samples enables discovery of cell types, patient groupings, and developmental trajectories of cells. A variety of clustering algorithms and software packages have been developed for gene expression clustering. This article aims to provide an overview of key clustering methods, and demonstrate their practical applications in bioinformatics.-
dc.languageeng-
dc.publisherElsevier-
dc.relation.ispartofEncyclopedia of Bioinformatics and Computational Biology-
dc.subjectClustering-
dc.subjectDimensionality reduction-
dc.subjectFeature selection-
dc.subjectGene expression-
dc.subjectDBSCAN-
dc.titleExpression Clustering-
dc.typeBook_Chapter-
dc.identifier.emailHo, JWK: jwkho@hku.hk-
dc.identifier.authorityHo, JWK=rp02436-
dc.identifier.doi10.1016/B978-0-12-809633-8.20212-4-
dc.identifier.scopuseid_2-s2.0-85079738921-
dc.identifier.hkuros298179-
dc.identifier.volume2-
dc.identifier.spage388-
dc.identifier.epage395-
dc.publisher.placeAmsterdam-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats