File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1111/jbi.13632
- Scopus: eid_2-s2.0-85067355817
- WOS: WOS:000483602900013
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: North Atlantic Gateway: Test bed of deep‐sea macroecological patterns
Title | North Atlantic Gateway: Test bed of deep‐sea macroecological patterns |
---|---|
Authors | |
Keywords | bathymetric barrier beta diversity depth diversity gradient latitudinal diversity gradient meiofauna |
Issue Date | 2019 |
Publisher | Wiley-Blackwell Publishing Ltd. The Journal's web site is located at http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-2699 |
Citation | Journal of Biogeography, 2019, v. 46 n. 9, p. 2056-2066 How to Cite? |
Abstract | Aim The deep waters around Iceland, known as the North Atlantic Gateway, constitute an ideal location to investigate deep‐sea ecological hypotheses. We constructed a comprehensive deep‐sea macroecological dataset of the North Atlantic Gateway region and investigated the controlling factors of large‐scale, deep‐sea species diversity patterns. Location Sub‐polar North Atlantic Ocean. Time period Modern. Major taxa studied Ostracoda (Crustacea). Methods We investigated deep‐sea biodiversity patterns and applied ecological modelling (multiple regression and model averaging) to test whether these patterns are governed by environmental factors such as temperature, surface primary productivity, and seasonality. Beta diversity analyses were applied to evaluate the effect of a geographical barrier (Greenland‐Iceland‐Faeroe Ridge) on deep‐sea benthic faunal distributions. Results We constructed a deep‐sea macroecological dataset with 32 stations, 5,676 specimens, and >122 species. We confirmed a linear latitudinal diversity gradient with higher diversity in the North Atlantic proper than in the Nordic Seas. We report a unimodal depth diversity gradient south of the ridge, but a linear diversity‐decline with depth north of the ridge. The turnover component of beta diversity increased towards the ridge. Main conclusions We found both temperature and surface primary production are important for deep‐sea biodiversity. For the first time, we report a significant diversity‐temperature relationship in both macroecological (spatial; this study) and existing paleoecological (time‐series) data for the same taxa. In addition to temperature and surface primary production, bathymetric features such as a shallow ridge acting as a barrier are an important factor for deep‐sea biodiversity distribution. The low diversity of the Nordic Seas is likely due to a combination of low temperatures and bathymetric barriers. These results substantially expand our understanding of the well‐known yet poorly understood Greenland‐Iceland‐Faeroe Ridge faunal transition with possible insight to its cause. |
Persistent Identifier | http://hdl.handle.net/10722/273173 |
ISSN | 2023 Impact Factor: 3.4 2023 SCImago Journal Rankings: 1.460 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jost, AB | - |
dc.contributor.author | Yasuhara, M | - |
dc.contributor.author | Wei, CL | - |
dc.contributor.author | Okahashi, H | - |
dc.contributor.author | Ostmann, A | - |
dc.contributor.author | Martínez Arbizu, P | - |
dc.contributor.author | Mamo, BL | - |
dc.contributor.author | Svavarsson, J | - |
dc.contributor.author | Brix, S | - |
dc.date.accessioned | 2019-08-06T09:23:53Z | - |
dc.date.available | 2019-08-06T09:23:53Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Journal of Biogeography, 2019, v. 46 n. 9, p. 2056-2066 | - |
dc.identifier.issn | 0305-0270 | - |
dc.identifier.uri | http://hdl.handle.net/10722/273173 | - |
dc.description.abstract | Aim The deep waters around Iceland, known as the North Atlantic Gateway, constitute an ideal location to investigate deep‐sea ecological hypotheses. We constructed a comprehensive deep‐sea macroecological dataset of the North Atlantic Gateway region and investigated the controlling factors of large‐scale, deep‐sea species diversity patterns. Location Sub‐polar North Atlantic Ocean. Time period Modern. Major taxa studied Ostracoda (Crustacea). Methods We investigated deep‐sea biodiversity patterns and applied ecological modelling (multiple regression and model averaging) to test whether these patterns are governed by environmental factors such as temperature, surface primary productivity, and seasonality. Beta diversity analyses were applied to evaluate the effect of a geographical barrier (Greenland‐Iceland‐Faeroe Ridge) on deep‐sea benthic faunal distributions. Results We constructed a deep‐sea macroecological dataset with 32 stations, 5,676 specimens, and >122 species. We confirmed a linear latitudinal diversity gradient with higher diversity in the North Atlantic proper than in the Nordic Seas. We report a unimodal depth diversity gradient south of the ridge, but a linear diversity‐decline with depth north of the ridge. The turnover component of beta diversity increased towards the ridge. Main conclusions We found both temperature and surface primary production are important for deep‐sea biodiversity. For the first time, we report a significant diversity‐temperature relationship in both macroecological (spatial; this study) and existing paleoecological (time‐series) data for the same taxa. In addition to temperature and surface primary production, bathymetric features such as a shallow ridge acting as a barrier are an important factor for deep‐sea biodiversity distribution. The low diversity of the Nordic Seas is likely due to a combination of low temperatures and bathymetric barriers. These results substantially expand our understanding of the well‐known yet poorly understood Greenland‐Iceland‐Faeroe Ridge faunal transition with possible insight to its cause. | - |
dc.language | eng | - |
dc.publisher | Wiley-Blackwell Publishing Ltd. The Journal's web site is located at http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-2699 | - |
dc.relation.ispartof | Journal of Biogeography | - |
dc.rights | Preprint This is the pre-peer reviewed version of the following article: [FULL CITE], which has been published in final form at [Link to final article using the DOI]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. Postprint This is the peer reviewed version of the following article: [FULL CITE], which has been published in final form at [Link to final article using the DOI]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. | - |
dc.subject | bathymetric barrier | - |
dc.subject | beta diversity | - |
dc.subject | depth diversity gradient | - |
dc.subject | latitudinal diversity gradient | - |
dc.subject | meiofauna | - |
dc.title | North Atlantic Gateway: Test bed of deep‐sea macroecological patterns | - |
dc.type | Article | - |
dc.identifier.email | Jost, AB: a66joest@hku.hk | - |
dc.identifier.email | Yasuhara, M: yasuhara@hku.hk | - |
dc.identifier.email | Mamo, BL: blmamo@HKUCC-COM.hku.hk | - |
dc.identifier.authority | Yasuhara, M=rp01474 | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1111/jbi.13632 | - |
dc.identifier.scopus | eid_2-s2.0-85067355817 | - |
dc.identifier.hkuros | 300473 | - |
dc.identifier.volume | 46 | - |
dc.identifier.issue | 9 | - |
dc.identifier.spage | 2056 | - |
dc.identifier.epage | 2066 | - |
dc.identifier.isi | WOS:000483602900013 | - |
dc.publisher.place | United Kingdom | - |
dc.identifier.issnl | 0305-0270 | - |