File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Evaluation on the Stabilization of Zn/Ni/Cu in Spinel Forms: Low-Cost Red Mud as an Effective Precursor

TitleEvaluation on the Stabilization of Zn/Ni/Cu in Spinel Forms: Low-Cost Red Mud as an Effective Precursor
Authors
KeywordsCopper
Fly ash
Nickel
Red mud
Spinel
Zinc
Issue Date2019
PublisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/envpol
Citation
Environmental Pollution, 2019, v. 249, p. 144-151 How to Cite?
AbstractRed mud, which is from the aluminum industry, is a potentially under-utilized resource. Technological processes for using low-cost red mud as an alternative precursor for detoxifying metal pollutants urgently need to be developed. In this study, we systematically investigated the feasibility of using red mud to detoxify metal-containing wastes (e.g., fly ash) via the formation of preferable crystalline phases. To understand the mechanism of metal detoxification by red mud, CuO, NiO, and ZnO were blended with red mud at different weight ratios and the mixtures were then subjected to ceramic-sintering. After sintering, the X-ray diffraction results revealed that all of the metals (i.e., Cu, Ni, and Zn) were able to be crystallographically incorporated into spinel lattices. Sintering the red mud at 1100 °C for 3 h effectively converted the metals into spinels. The mixing weight ratios strongly affected the efficiency of the metal incorporation. The red mud was able to incorporate 15 wt% of metal oxides. The incorporation mechanisms mainly occurred between the metal oxide(s) and hematite. Modified TCLP tests were conducted to further evaluate the metal stabilization performance of the red mud, which demonstrated the leachabilities of ZnO and the sintered red mud + ZnO product. The concentration of leached metal was substantially reduced after the incorporation process, thus demonstrating that red mud can be successfully used to detoxify metals. The results of this study reveal that waste red mud can be feasibly reused as a promising waste-to-resource strategy for stabilizing heavy metal wastes. © 2019 Elsevier Ltd
Persistent Identifierhttp://hdl.handle.net/10722/274876
ISSN
2021 Impact Factor: 9.988
2020 SCImago Journal Rankings: 2.136
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorSu, M-
dc.contributor.authorLiao, C-
dc.contributor.authorMa, S-
dc.contributor.authorZhang, K-
dc.contributor.authorTang, J-
dc.contributor.authorLiu, C-
dc.contributor.authorShih, K-
dc.date.accessioned2019-09-10T02:30:42Z-
dc.date.available2019-09-10T02:30:42Z-
dc.date.issued2019-
dc.identifier.citationEnvironmental Pollution, 2019, v. 249, p. 144-151-
dc.identifier.issn0269-7491-
dc.identifier.urihttp://hdl.handle.net/10722/274876-
dc.description.abstractRed mud, which is from the aluminum industry, is a potentially under-utilized resource. Technological processes for using low-cost red mud as an alternative precursor for detoxifying metal pollutants urgently need to be developed. In this study, we systematically investigated the feasibility of using red mud to detoxify metal-containing wastes (e.g., fly ash) via the formation of preferable crystalline phases. To understand the mechanism of metal detoxification by red mud, CuO, NiO, and ZnO were blended with red mud at different weight ratios and the mixtures were then subjected to ceramic-sintering. After sintering, the X-ray diffraction results revealed that all of the metals (i.e., Cu, Ni, and Zn) were able to be crystallographically incorporated into spinel lattices. Sintering the red mud at 1100 °C for 3 h effectively converted the metals into spinels. The mixing weight ratios strongly affected the efficiency of the metal incorporation. The red mud was able to incorporate 15 wt% of metal oxides. The incorporation mechanisms mainly occurred between the metal oxide(s) and hematite. Modified TCLP tests were conducted to further evaluate the metal stabilization performance of the red mud, which demonstrated the leachabilities of ZnO and the sintered red mud + ZnO product. The concentration of leached metal was substantially reduced after the incorporation process, thus demonstrating that red mud can be successfully used to detoxify metals. The results of this study reveal that waste red mud can be feasibly reused as a promising waste-to-resource strategy for stabilizing heavy metal wastes. © 2019 Elsevier Ltd-
dc.languageeng-
dc.publisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/envpol-
dc.relation.ispartofEnvironmental Pollution-
dc.subjectCopper-
dc.subjectFly ash-
dc.subjectNickel-
dc.subjectRed mud-
dc.subjectSpinel-
dc.subjectZinc-
dc.titleEvaluation on the Stabilization of Zn/Ni/Cu in Spinel Forms: Low-Cost Red Mud as an Effective Precursor-
dc.typeArticle-
dc.identifier.emailLiao, C: liaocz@HKUCC-COM.hku.hk-
dc.identifier.emailShih, K: kshih@hku.hk-
dc.identifier.authorityShih, K=rp00167-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/j.envpol.2019.02.075-
dc.identifier.pmid30884393-
dc.identifier.scopuseid_2-s2.0-85063324757-
dc.identifier.hkuros303613-
dc.identifier.volume249-
dc.identifier.spage144-
dc.identifier.epage151-
dc.identifier.isiWOS:000471081300016-
dc.publisher.placeUnited Kingdom-
dc.identifier.issnl0269-7491-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats