File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Superresolution image reconstruction using fast inpainting algorithms

TitleSuperresolution image reconstruction using fast inpainting algorithms
Authors
Issue Date2007
Citation
Applied and Computational Harmonic Analysis, 2007, v. 23, n. 1, p. 3-24 How to Cite?
AbstractThe main aim of this paper is to employ the total variation (TV) inpainting model to superresolution imaging problems. We focus on the problem of reconstructing a high-resolution image from several decimated, blurred and noisy low-resolution versions of the high-resolution image. We propose a general framework for multiple shifted and multiple blurred low-resolution image frames which subsumes several well-known superresolution models. Moreover, our framework allows an arbitrary pattern of missing pixels and in particular missing frames. The proposed model combines the TV inpainting model with the framework to formulate the superresolution image reconstruction problem as an optimization problem. A distinct feature of our model is that in regions without missing pixels, the reconstruction process is regularized by TV minimization whereas in regions with missing pixels or missing frames, they are reconstructed automatically by means of TV inpainting. A fast algorithm based on fixed-point iterations and preconditioning techniques is investigated to solve the associated Euler-Lagrange equations. Experimental results are given to show that the proposed TV superresolution imaging model is effective and the proposed algorithm is efficient. © 2007 Elsevier Inc. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/276811
ISSN
2023 Impact Factor: 2.6
2023 SCImago Journal Rankings: 2.231
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorChan, Tony F.-
dc.contributor.authorNg, Michael K.-
dc.contributor.authorYau, Andy C.-
dc.contributor.authorYip, Andy M.-
dc.date.accessioned2019-09-18T08:34:44Z-
dc.date.available2019-09-18T08:34:44Z-
dc.date.issued2007-
dc.identifier.citationApplied and Computational Harmonic Analysis, 2007, v. 23, n. 1, p. 3-24-
dc.identifier.issn1063-5203-
dc.identifier.urihttp://hdl.handle.net/10722/276811-
dc.description.abstractThe main aim of this paper is to employ the total variation (TV) inpainting model to superresolution imaging problems. We focus on the problem of reconstructing a high-resolution image from several decimated, blurred and noisy low-resolution versions of the high-resolution image. We propose a general framework for multiple shifted and multiple blurred low-resolution image frames which subsumes several well-known superresolution models. Moreover, our framework allows an arbitrary pattern of missing pixels and in particular missing frames. The proposed model combines the TV inpainting model with the framework to formulate the superresolution image reconstruction problem as an optimization problem. A distinct feature of our model is that in regions without missing pixels, the reconstruction process is regularized by TV minimization whereas in regions with missing pixels or missing frames, they are reconstructed automatically by means of TV inpainting. A fast algorithm based on fixed-point iterations and preconditioning techniques is investigated to solve the associated Euler-Lagrange equations. Experimental results are given to show that the proposed TV superresolution imaging model is effective and the proposed algorithm is efficient. © 2007 Elsevier Inc. All rights reserved.-
dc.languageeng-
dc.relation.ispartofApplied and Computational Harmonic Analysis-
dc.titleSuperresolution image reconstruction using fast inpainting algorithms-
dc.typeArticle-
dc.description.naturelink_to_OA_fulltext-
dc.identifier.doi10.1016/j.acha.2006.09.005-
dc.identifier.scopuseid_2-s2.0-34249798712-
dc.identifier.volume23-
dc.identifier.issue1-
dc.identifier.spage3-
dc.identifier.epage24-
dc.identifier.eissn1096-603X-
dc.identifier.isiWOS:000247804100002-
dc.identifier.issnl1063-5203-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats