File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Biospheric and anthropogenic contributors to atmospheric CO2 variability in a residential neighborhood of Phoenix, Arizona

TitleBiospheric and anthropogenic contributors to atmospheric CO2 variability in a residential neighborhood of Phoenix, Arizona
Authors
Issue Date2017
Citation
Journal of Geophysical Research, 2017, v. 122, n. 6, p. 3317-3329 How to Cite?
Abstract© 2017. American Geophysical Union. All Rights Reserved. Urban environment contributes significantly to the global carbon cycle with complex governing mechanisms due to the combined biospheric and anthropogenic contributors. In this study, we analyzed the patterns of boundary layer CO2 flux and concentration for a residential neighborhood in Phoenix, Arizona by using the eddy covariance technique and a single column atmospheric model. Atmospheric stability, anthropogenic emission, and biogenic effect are found to be key determinants to atmospheric CO2 variability. In a diurnal cycle, two CO2 flux peaks coincide with morning and afternoon peak traffic hours, exemplifying the influence of traffic emissions. In the annual cycle, maximum CO2 concentration is found in winter, mainly due to additional emission from the combustion of natural gas combined with the effect of poor dispersion. On the other hand, the minimum CO2 concentration is found in the spring and is attributable to the strong convective mixing and active vegetation uptake. In addition, prominent hysteresis has been found between the atmospheric CO2 concentration and air temperature with a “plait-shaped” pattern in the diurnal cycle and an “oval-shaped” loop for the seasonal variability.
Persistent Identifierhttp://hdl.handle.net/10722/277665
ISSN
2015 Impact Factor: 3.318
2020 SCImago Journal Rankings: 1.670
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorSong, Jiyun-
dc.contributor.authorWang, Zhi Hua-
dc.contributor.authorWang, Chenghao-
dc.date.accessioned2019-09-27T08:29:38Z-
dc.date.available2019-09-27T08:29:38Z-
dc.date.issued2017-
dc.identifier.citationJournal of Geophysical Research, 2017, v. 122, n. 6, p. 3317-3329-
dc.identifier.issn0148-0227-
dc.identifier.urihttp://hdl.handle.net/10722/277665-
dc.description.abstract© 2017. American Geophysical Union. All Rights Reserved. Urban environment contributes significantly to the global carbon cycle with complex governing mechanisms due to the combined biospheric and anthropogenic contributors. In this study, we analyzed the patterns of boundary layer CO2 flux and concentration for a residential neighborhood in Phoenix, Arizona by using the eddy covariance technique and a single column atmospheric model. Atmospheric stability, anthropogenic emission, and biogenic effect are found to be key determinants to atmospheric CO2 variability. In a diurnal cycle, two CO2 flux peaks coincide with morning and afternoon peak traffic hours, exemplifying the influence of traffic emissions. In the annual cycle, maximum CO2 concentration is found in winter, mainly due to additional emission from the combustion of natural gas combined with the effect of poor dispersion. On the other hand, the minimum CO2 concentration is found in the spring and is attributable to the strong convective mixing and active vegetation uptake. In addition, prominent hysteresis has been found between the atmospheric CO2 concentration and air temperature with a “plait-shaped” pattern in the diurnal cycle and an “oval-shaped” loop for the seasonal variability.-
dc.languageeng-
dc.relation.ispartofJournal of Geophysical Research-
dc.titleBiospheric and anthropogenic contributors to atmospheric CO2 variability in a residential neighborhood of Phoenix, Arizona-
dc.typeArticle-
dc.description.naturelink_to_OA_fulltext-
dc.identifier.doi10.1002/2016JD026267-
dc.identifier.scopuseid_2-s2.0-85017372868-
dc.identifier.volume122-
dc.identifier.issue6-
dc.identifier.spage3317-
dc.identifier.epage3329-
dc.identifier.eissn2156-2202-
dc.identifier.isiWOS:000399655200009-
dc.identifier.issnl0148-0227-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats