File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1186/s40035-015-0048-7
- Scopus: eid_2-s2.0-84953378881
- PMID: 26740873
- WOS: WOS:000367988200001
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: 7,8-dihydroxyflavone, a small molecular TrkB agonist, is useful for treating various BDNF-implicated human disorders
Title | 7,8-dihydroxyflavone, a small molecular TrkB agonist, is useful for treating various BDNF-implicated human disorders |
---|---|
Authors | |
Keywords | Flavonoids Neurotrophin BDNF Mimetic compound Receptor agonistic activity |
Issue Date | 2016 |
Publisher | BioMed Central Ltd. The Journal's web site is located at http://www.translationalneurodegeneration.com/ |
Citation | Translational Neurodegeneration, 2016, v. 5, p. article no. 2 How to Cite? |
Abstract | Brain-derived neurotrophic factor (BDNF) regulates a variety of biological processes predominantly via binding to the transmembrane receptor tyrosine kinase TrkB. It is a potential therapeutic target in numerous neurological, mental and metabolic disorders. However, the lack of efficient means to deliver BDNF into the body imposes an insurmountable hurdle to its clinical application. To address this challenge, we initiated a cell-based drug screening to search for small molecules that act as the TrkB agonist. 7,8-Dihydroxyflavone (7,8-DHF) is our first reported small molecular TrkB agonist, which has now been extensively validated in various biochemical and cellular systems. Though binding to the extracellular domain of TrkB, 7,8-DHF triggers TrkB dimerization to induce the downstream signaling. Notably, 7,8-DHF is orally bioactive that can penetrate the brain blood barrier (BBB) to exert its neurotrophic activities in the central nervous system. Numerous reports suggest 7,8-DHF processes promising therapeutic efficacy in various animal disease models that are related to deficient BDNF signaling. In this review, we summarize our current knowledge on the binding activity and specificity, structure-activity relationship, pharmacokinetic and metabolism, and the pre-clinical efficacy of 7,8-DHF against some human diseases. |
Persistent Identifier | http://hdl.handle.net/10722/281736 |
ISSN | 2023 Impact Factor: 10.8 2023 SCImago Journal Rankings: 3.371 |
PubMed Central ID | |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Liu, C | - |
dc.contributor.author | Chan, CB | - |
dc.contributor.author | Ye, K | - |
dc.date.accessioned | 2020-03-22T04:18:55Z | - |
dc.date.available | 2020-03-22T04:18:55Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | Translational Neurodegeneration, 2016, v. 5, p. article no. 2 | - |
dc.identifier.issn | 2047-9158 | - |
dc.identifier.uri | http://hdl.handle.net/10722/281736 | - |
dc.description.abstract | Brain-derived neurotrophic factor (BDNF) regulates a variety of biological processes predominantly via binding to the transmembrane receptor tyrosine kinase TrkB. It is a potential therapeutic target in numerous neurological, mental and metabolic disorders. However, the lack of efficient means to deliver BDNF into the body imposes an insurmountable hurdle to its clinical application. To address this challenge, we initiated a cell-based drug screening to search for small molecules that act as the TrkB agonist. 7,8-Dihydroxyflavone (7,8-DHF) is our first reported small molecular TrkB agonist, which has now been extensively validated in various biochemical and cellular systems. Though binding to the extracellular domain of TrkB, 7,8-DHF triggers TrkB dimerization to induce the downstream signaling. Notably, 7,8-DHF is orally bioactive that can penetrate the brain blood barrier (BBB) to exert its neurotrophic activities in the central nervous system. Numerous reports suggest 7,8-DHF processes promising therapeutic efficacy in various animal disease models that are related to deficient BDNF signaling. In this review, we summarize our current knowledge on the binding activity and specificity, structure-activity relationship, pharmacokinetic and metabolism, and the pre-clinical efficacy of 7,8-DHF against some human diseases. | - |
dc.language | eng | - |
dc.publisher | BioMed Central Ltd. The Journal's web site is located at http://www.translationalneurodegeneration.com/ | - |
dc.relation.ispartof | Translational Neurodegeneration | - |
dc.rights | Translational Neurodegeneration. Copyright © BioMed Central Ltd. | - |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.subject | Flavonoids | - |
dc.subject | Neurotrophin | - |
dc.subject | BDNF | - |
dc.subject | Mimetic compound | - |
dc.subject | Receptor agonistic activity | - |
dc.title | 7,8-dihydroxyflavone, a small molecular TrkB agonist, is useful for treating various BDNF-implicated human disorders | - |
dc.type | Article | - |
dc.identifier.email | Chan, CB: chancb@hku.hk | - |
dc.identifier.authority | Chan, CB=rp02140 | - |
dc.description.nature | published_or_final_version | - |
dc.identifier.doi | 10.1186/s40035-015-0048-7 | - |
dc.identifier.pmid | 26740873 | - |
dc.identifier.pmcid | PMC4702337 | - |
dc.identifier.scopus | eid_2-s2.0-84953378881 | - |
dc.identifier.hkuros | 309463 | - |
dc.identifier.volume | 5 | - |
dc.identifier.spage | article no. 2 | - |
dc.identifier.epage | article no. 2 | - |
dc.identifier.isi | WOS:000367988200001 | - |
dc.publisher.place | United Kingdom | - |
dc.identifier.issnl | 2047-9158 | - |