File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1007/s13253-016-0264-3
- Scopus: eid_2-s2.0-84986253502
- WOS: WOS:000389464800003
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Bayesian Semiparametric Model for Pathway-Based Analysis with Zero-Inflated Clinical Outcomes
Title | Bayesian Semiparametric Model for Pathway-Based Analysis with Zero-Inflated Clinical Outcomes |
---|---|
Authors | |
Keywords | Gaussian process Marginal likelihood Mixed model Unknown link Pathway based analysis |
Issue Date | 2016 |
Publisher | American Statistical Association. The Journal's web site is located at http://www.amstat.org/publications/jabes |
Citation | Journal of Agricultural, Biological, and Environmental Statistics, 2016, v. 21, p. 641-662 How to Cite? |
Abstract | In this paper, we propose a semiparametric regression approach for identifying pathways related to zero-inflated clinical outcomes, where a pathway is a gene set derived from prior biological knowledge. Our approach is developed by using a Bayesian hierarchical framework. We model the pathway effect nonparametrically into a zero-inflated Poisson hierarchical regression model with an unknown link function. Nonparametric pathway effect was estimated via a kernel machine, and the unknown link function was estimated by transforming a mixture of the beta cumulative density function. Our approach provides flexible nonparametric settings to describe the complicated association between gene expressions and zero-inflated clinical outcomes. The Metropolis-within-Gibbs sampling algorithm and Bayes factor were adopted to make statistical inferences. Our simulation results support that our semiparametric approach is more accurate and flexible than zero-inflated Poisson regression with the canonical link function, which is especially true when the number of genes is large. The usefulness of our approach is demonstrated through its applications to the Canine data set from Enerson et al. (Toxicol Pathol 34:27–32, 2006). Our approach can also be applied to other settings where a large number of highly correlated predictors are present. |
Persistent Identifier | http://hdl.handle.net/10722/281773 |
ISSN | 2023 Impact Factor: 1.4 2023 SCImago Journal Rankings: 0.526 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cheng, L | - |
dc.contributor.author | Kim, I | - |
dc.contributor.author | Pang, H | - |
dc.date.accessioned | 2020-03-27T04:22:22Z | - |
dc.date.available | 2020-03-27T04:22:22Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | Journal of Agricultural, Biological, and Environmental Statistics, 2016, v. 21, p. 641-662 | - |
dc.identifier.issn | 1085-7117 | - |
dc.identifier.uri | http://hdl.handle.net/10722/281773 | - |
dc.description.abstract | In this paper, we propose a semiparametric regression approach for identifying pathways related to zero-inflated clinical outcomes, where a pathway is a gene set derived from prior biological knowledge. Our approach is developed by using a Bayesian hierarchical framework. We model the pathway effect nonparametrically into a zero-inflated Poisson hierarchical regression model with an unknown link function. Nonparametric pathway effect was estimated via a kernel machine, and the unknown link function was estimated by transforming a mixture of the beta cumulative density function. Our approach provides flexible nonparametric settings to describe the complicated association between gene expressions and zero-inflated clinical outcomes. The Metropolis-within-Gibbs sampling algorithm and Bayes factor were adopted to make statistical inferences. Our simulation results support that our semiparametric approach is more accurate and flexible than zero-inflated Poisson regression with the canonical link function, which is especially true when the number of genes is large. The usefulness of our approach is demonstrated through its applications to the Canine data set from Enerson et al. (Toxicol Pathol 34:27–32, 2006). Our approach can also be applied to other settings where a large number of highly correlated predictors are present. | - |
dc.language | eng | - |
dc.publisher | American Statistical Association. The Journal's web site is located at http://www.amstat.org/publications/jabes | - |
dc.relation.ispartof | Journal of Agricultural, Biological, and Environmental Statistics | - |
dc.subject | Gaussian process | - |
dc.subject | Marginal likelihood | - |
dc.subject | Mixed model | - |
dc.subject | Unknown link | - |
dc.subject | Pathway based analysis | - |
dc.title | Bayesian Semiparametric Model for Pathway-Based Analysis with Zero-Inflated Clinical Outcomes | - |
dc.type | Article | - |
dc.identifier.email | Pang, H: herbpang@hku.hk | - |
dc.identifier.authority | Pang, H=rp01857 | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1007/s13253-016-0264-3 | - |
dc.identifier.scopus | eid_2-s2.0-84986253502 | - |
dc.identifier.hkuros | 309589 | - |
dc.identifier.volume | 21 | - |
dc.identifier.spage | 641 | - |
dc.identifier.epage | 662 | - |
dc.identifier.isi | WOS:000389464800003 | - |
dc.publisher.place | United States | - |
dc.identifier.issnl | 1085-7117 | - |