File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.3389/fphar.2020.00414
- Scopus: eid_2-s2.0-85083507803
- WOS: WOS:000528719300001
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Interpreting the Pharmacological Mechanisms of Huachansu Capsules on Hepatocellular Carcinoma Through Combining Network Pharmacology and Experimental Evaluation
Title | Interpreting the Pharmacological Mechanisms of Huachansu Capsules on Hepatocellular Carcinoma Through Combining Network Pharmacology and Experimental Evaluation |
---|---|
Authors | |
Keywords | Huachansu capsules network pharmacology hepatocellular carcinoma molecular targets KEGG pathway |
Issue Date | 2020 |
Publisher | Frontiers Research Foundation. The Journal's web site is located at http://www.frontiersin.org/pharmacology |
Citation | Frontiers in Pharmacology, 2020, v. 11, p. article no. 414 How to Cite? |
Abstract | Hepatocellular carcinoma (HCC) is one of the most fatal cancers across the world. Chinese medicine has been used as adjunctive or complementary therapy for the management of HCC. Huachansu belongs to a class of toxic steroids isolated from toad venom that has important anti-cancer property. This study was aimed to identify the bioactive constituents and molecular targets of Huachansu capsules (HCSCs) for treating HCC using network pharmacology analysis and experimental assays. The major bioactive components of HCSCs were determined using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). A series of network pharmacology methods including target prediction, pathway identification, and network establishment were applied to identify the modes of action of HCSCs against HCC. Furthermore, a series of experiments, including MTT, clonogenic assay, 3-D transwell, wound healing assay, as well as flow cytometry, were conducted to verify the inhibitory ability of HCSCs on HCC in vitro. The results showed that 11 chemical components were identified from HCSCs. The network pharmacological analysis showed that there were 82 related anti-HCC targets and 14 potential pathways for these 11 components. Moreover, experimental assays confirmed the inhibitory effects of HCSCs against HCC in vitro. Taken together, our study revealed the synergistic effects of HCSCs on a systematic level, and suggested that HCSCs exhibited anti-HCC effects in a multi-component, multi-target, and multi-pathway manner. |
Persistent Identifier | http://hdl.handle.net/10722/282547 |
ISSN | 2023 Impact Factor: 4.4 2023 SCImago Journal Rankings: 1.066 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Huang, J | - |
dc.contributor.author | CHEN, F | - |
dc.contributor.author | Zhong, Z | - |
dc.contributor.author | Tan, HY | - |
dc.contributor.author | Wang, N | - |
dc.contributor.author | Liu, Y | - |
dc.contributor.author | Fang, X | - |
dc.contributor.author | Yang, T | - |
dc.contributor.author | Feng, Y | - |
dc.date.accessioned | 2020-05-15T05:29:31Z | - |
dc.date.available | 2020-05-15T05:29:31Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Frontiers in Pharmacology, 2020, v. 11, p. article no. 414 | - |
dc.identifier.issn | 1663-9812 | - |
dc.identifier.uri | http://hdl.handle.net/10722/282547 | - |
dc.description.abstract | Hepatocellular carcinoma (HCC) is one of the most fatal cancers across the world. Chinese medicine has been used as adjunctive or complementary therapy for the management of HCC. Huachansu belongs to a class of toxic steroids isolated from toad venom that has important anti-cancer property. This study was aimed to identify the bioactive constituents and molecular targets of Huachansu capsules (HCSCs) for treating HCC using network pharmacology analysis and experimental assays. The major bioactive components of HCSCs were determined using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). A series of network pharmacology methods including target prediction, pathway identification, and network establishment were applied to identify the modes of action of HCSCs against HCC. Furthermore, a series of experiments, including MTT, clonogenic assay, 3-D transwell, wound healing assay, as well as flow cytometry, were conducted to verify the inhibitory ability of HCSCs on HCC in vitro. The results showed that 11 chemical components were identified from HCSCs. The network pharmacological analysis showed that there were 82 related anti-HCC targets and 14 potential pathways for these 11 components. Moreover, experimental assays confirmed the inhibitory effects of HCSCs against HCC in vitro. Taken together, our study revealed the synergistic effects of HCSCs on a systematic level, and suggested that HCSCs exhibited anti-HCC effects in a multi-component, multi-target, and multi-pathway manner. | - |
dc.language | eng | - |
dc.publisher | Frontiers Research Foundation. The Journal's web site is located at http://www.frontiersin.org/pharmacology | - |
dc.relation.ispartof | Frontiers in Pharmacology | - |
dc.rights | This Document is Protected by copyright and was first published by Frontiers. All rights reserved. It is reproduced with permission. | - |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.subject | Huachansu capsules | - |
dc.subject | network pharmacology | - |
dc.subject | hepatocellular carcinoma | - |
dc.subject | molecular targets | - |
dc.subject | KEGG pathway | - |
dc.title | Interpreting the Pharmacological Mechanisms of Huachansu Capsules on Hepatocellular Carcinoma Through Combining Network Pharmacology and Experimental Evaluation | - |
dc.type | Article | - |
dc.identifier.email | Zhong, Z: zfzhong@hku.hk | - |
dc.identifier.email | Tan, HY: hyhtan@hku.hk | - |
dc.identifier.email | Wang, N: ckwang@hku.hk | - |
dc.identifier.email | Feng, Y: yfeng@hku.hk | - |
dc.identifier.authority | Wang, N=rp02075 | - |
dc.identifier.authority | Feng, Y=rp00466 | - |
dc.description.nature | published_or_final_version | - |
dc.identifier.doi | 10.3389/fphar.2020.00414 | - |
dc.identifier.scopus | eid_2-s2.0-85083507803 | - |
dc.identifier.hkuros | 309973 | - |
dc.identifier.volume | 11 | - |
dc.identifier.spage | article no. 414 | - |
dc.identifier.epage | article no. 414 | - |
dc.identifier.isi | WOS:000528719300001 | - |
dc.publisher.place | Switzerland | - |
dc.identifier.issnl | 1663-9812 | - |