File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.scitotenv.2020.140501
- Scopus: eid_2-s2.0-85087103008
- PMID: 32622166
- WOS: WOS:000569416600009
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Characteristics and toxicological effects of commuter exposure to black carbon and metal components of fine particles (PM2.5) in Hong Kong
Title | Characteristics and toxicological effects of commuter exposure to black carbon and metal components of fine particles (PM2.5) in Hong Kong |
---|---|
Authors | |
Keywords | Commuter exposure Black carbon Transition metals Cytotoxicity Reactive oxygen species (ROS) |
Issue Date | 2020 |
Publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/scitotenv |
Citation | Science of the Total Environment, 2020, v. 742, p. article no. 140501 How to Cite? |
Abstract | Epidemiological studies have demonstrated significant associations between traffic-related air pollution and adverse health outcomes. Personal exposure to fine particles (PM2.5) in transport microenvironments and their toxicological properties remain to be investigated. Commuter exposures were investigated in public transport systems (including the buses and Mass Transit Railway (MTR)) along two sampling routes in Hong Kong. Real-time sampling for PM2.5 and black carbon (BC), along with integrated PM2.5 sampling, were performed during the warm and cold season of 2016–2017, respectively. Commuter exposure to BC during 3-hour commuting time exhibited a wider range, from 3.4 to 4.6 μg/m3 on the bus and 5.5 to 8.7 μg/m3 in MTR cabin (p < .05). PM2.5 mass and major chemical constituents (including organic carbon (OC), elemental carbon (EC), and metals) were analyzed. Cytotoxicity, including cellular reactive oxygen species (ROS) production, was determined in addition to acellular ROS generation. PM2.5 treatment promoted the ROS generation in a concentration-dependent manner. Consistent diurnal variations were observed for commuter exposure to BC and PM2.5 components, along with cellular and acellular ROS generation, which marked with two peaks during the morning (08:00–11:00) and evening rush hours (17:30–20:30). Commuter exposures in the MTR system were characterized by higher levels of PM2.5 and elemental components (e.g., Ca, Cr, Fe, Zn, Ba) compared to riding the bus, along with higher cellular and acellular ROS production (p < .01). These metals were attributed to different sources: rail tracks, wheels, brakes, and crustal origin. Weak to moderate associations were shown for the analyzed transition metals with PM2.5-induced cell viability and cellular ROS. Multiple linear regression analysis revealed that Ni, Zn, Mn, Fe, Ti, and Co attributed to cytotoxicity and ROS generation. These findings underscore the importance of commuter exposures and their toxic effects, urging effective mitigating strategies to protect human health. |
Persistent Identifier | http://hdl.handle.net/10722/284475 |
ISSN | 2023 Impact Factor: 8.2 2023 SCImago Journal Rankings: 1.998 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chen, XC | - |
dc.contributor.author | Cao, JJ | - |
dc.contributor.author | Ward, TJ | - |
dc.contributor.author | Tian, LW | - |
dc.contributor.author | Ning, Z | - |
dc.contributor.author | Gali, NK | - |
dc.contributor.author | Aquilina, N | - |
dc.contributor.author | Yim, SHL | - |
dc.contributor.author | Qu, L | - |
dc.contributor.author | Ho, KF | - |
dc.date.accessioned | 2020-08-07T08:58:09Z | - |
dc.date.available | 2020-08-07T08:58:09Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Science of the Total Environment, 2020, v. 742, p. article no. 140501 | - |
dc.identifier.issn | 0048-9697 | - |
dc.identifier.uri | http://hdl.handle.net/10722/284475 | - |
dc.description.abstract | Epidemiological studies have demonstrated significant associations between traffic-related air pollution and adverse health outcomes. Personal exposure to fine particles (PM2.5) in transport microenvironments and their toxicological properties remain to be investigated. Commuter exposures were investigated in public transport systems (including the buses and Mass Transit Railway (MTR)) along two sampling routes in Hong Kong. Real-time sampling for PM2.5 and black carbon (BC), along with integrated PM2.5 sampling, were performed during the warm and cold season of 2016–2017, respectively. Commuter exposure to BC during 3-hour commuting time exhibited a wider range, from 3.4 to 4.6 μg/m3 on the bus and 5.5 to 8.7 μg/m3 in MTR cabin (p < .05). PM2.5 mass and major chemical constituents (including organic carbon (OC), elemental carbon (EC), and metals) were analyzed. Cytotoxicity, including cellular reactive oxygen species (ROS) production, was determined in addition to acellular ROS generation. PM2.5 treatment promoted the ROS generation in a concentration-dependent manner. Consistent diurnal variations were observed for commuter exposure to BC and PM2.5 components, along with cellular and acellular ROS generation, which marked with two peaks during the morning (08:00–11:00) and evening rush hours (17:30–20:30). Commuter exposures in the MTR system were characterized by higher levels of PM2.5 and elemental components (e.g., Ca, Cr, Fe, Zn, Ba) compared to riding the bus, along with higher cellular and acellular ROS production (p < .01). These metals were attributed to different sources: rail tracks, wheels, brakes, and crustal origin. Weak to moderate associations were shown for the analyzed transition metals with PM2.5-induced cell viability and cellular ROS. Multiple linear regression analysis revealed that Ni, Zn, Mn, Fe, Ti, and Co attributed to cytotoxicity and ROS generation. These findings underscore the importance of commuter exposures and their toxic effects, urging effective mitigating strategies to protect human health. | - |
dc.language | eng | - |
dc.publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/scitotenv | - |
dc.relation.ispartof | Science of the Total Environment | - |
dc.subject | Commuter exposure | - |
dc.subject | Black carbon | - |
dc.subject | Transition metals | - |
dc.subject | Cytotoxicity | - |
dc.subject | Reactive oxygen species (ROS) | - |
dc.title | Characteristics and toxicological effects of commuter exposure to black carbon and metal components of fine particles (PM2.5) in Hong Kong | - |
dc.type | Article | - |
dc.identifier.email | Chen, XC: chenxcui@hku.hk | - |
dc.identifier.email | Tian, LW: linweit@hku.hk | - |
dc.identifier.authority | Tian, LW=rp01991 | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1016/j.scitotenv.2020.140501 | - |
dc.identifier.pmid | 32622166 | - |
dc.identifier.scopus | eid_2-s2.0-85087103008 | - |
dc.identifier.hkuros | 312384 | - |
dc.identifier.volume | 742 | - |
dc.identifier.spage | article no. 140501 | - |
dc.identifier.epage | article no. 140501 | - |
dc.identifier.isi | WOS:000569416600009 | - |
dc.publisher.place | Netherlands | - |
dc.identifier.issnl | 0048-9697 | - |