File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Error analysis of a variational multiscale stabilization for convection-dominated diffusion equations in two dimensions

TitleError analysis of a variational multiscale stabilization for convection-dominated diffusion equations in two dimensions
Authors
Keywordsconvection dominated
Petrov-Galerkin
variational multiscale method
Issue Date2018
Citation
IMA Journal of Numerical Analysis, 2018, v. 38, n. 3, p. 1229-1253 How to Cite?
Abstract© 2017 The authors. We formulate a stabilized quasi-optimal Petrov-Galerkin method for singularly perturbed convection-diffusion problems based on the variational multiscale method. The stabilization is of Petrov-Galerkin type with a standard finite element trial space and a problem-dependent test space based on pre-computed finescale correctors. The exponential decay of these correctors and their localization to local patch problems, which depend on the direction of the velocity field and the singular perturbation parameter, are rigorously justified. Under moderate assumptions, this stabilization guarantees stability and a quasi-optimal rate of convergence for arbitrary mesh Péclet numbers on fairly coarse meshes at the cost of additional interelement communication.
Persistent Identifierhttp://hdl.handle.net/10722/286979
ISSN
2023 Impact Factor: 2.3
2023 SCImago Journal Rankings: 1.861
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorLi, Guanglian-
dc.contributor.authorPeterseim, Daniel-
dc.contributor.authorSchedensack, Mira-
dc.date.accessioned2020-09-07T11:46:10Z-
dc.date.available2020-09-07T11:46:10Z-
dc.date.issued2018-
dc.identifier.citationIMA Journal of Numerical Analysis, 2018, v. 38, n. 3, p. 1229-1253-
dc.identifier.issn0272-4979-
dc.identifier.urihttp://hdl.handle.net/10722/286979-
dc.description.abstract© 2017 The authors. We formulate a stabilized quasi-optimal Petrov-Galerkin method for singularly perturbed convection-diffusion problems based on the variational multiscale method. The stabilization is of Petrov-Galerkin type with a standard finite element trial space and a problem-dependent test space based on pre-computed finescale correctors. The exponential decay of these correctors and their localization to local patch problems, which depend on the direction of the velocity field and the singular perturbation parameter, are rigorously justified. Under moderate assumptions, this stabilization guarantees stability and a quasi-optimal rate of convergence for arbitrary mesh Péclet numbers on fairly coarse meshes at the cost of additional interelement communication.-
dc.languageeng-
dc.relation.ispartofIMA Journal of Numerical Analysis-
dc.subjectconvection dominated-
dc.subjectPetrov-Galerkin-
dc.subjectvariational multiscale method-
dc.titleError analysis of a variational multiscale stabilization for convection-dominated diffusion equations in two dimensions-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1093/imanum/drx027-
dc.identifier.scopuseid_2-s2.0-85057173642-
dc.identifier.volume38-
dc.identifier.issue3-
dc.identifier.spage1229-
dc.identifier.epage1253-
dc.identifier.eissn1464-3642-
dc.identifier.isiWOS:000450010000006-
dc.identifier.issnl0272-4979-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats