File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Edge multiscale methods for elliptic problems with heterogeneous coefficients

TitleEdge multiscale methods for elliptic problems with heterogeneous coefficients
Authors
KeywordsWavelets
Edge
Heterogeneous
High-contrast
Multiscale
Steklov eigenvalue
Issue Date2019
Citation
Journal of Computational Physics, 2019, v. 396, p. 228-242 How to Cite?
Abstract© 2019 Elsevier Inc. In this paper, we proposed two new types of edge multiscale methods motivated by [14] to solve Partial Differential Equations (PDEs) with high-contrast heterogeneous coefficients: Edge Spectral Multiscale Finite Element Method (ESMsFEM) and Wavelet-based Edge Multiscale Finite Element Method (WEMsFEM). Their convergence rates for elliptic problems with high-contrast heterogeneous coefficients are demonstrated in terms of the coarse mesh size H, the number of spectral basis functions and the level of the wavelet space ℓ, which are verified by extensive numerical tests.
Persistent Identifierhttp://hdl.handle.net/10722/286994
ISSN
2023 Impact Factor: 3.8
2023 SCImago Journal Rankings: 1.679
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorFu, Shubin-
dc.contributor.authorChung, Eric-
dc.contributor.authorLi, Guanglian-
dc.date.accessioned2020-09-07T11:46:13Z-
dc.date.available2020-09-07T11:46:13Z-
dc.date.issued2019-
dc.identifier.citationJournal of Computational Physics, 2019, v. 396, p. 228-242-
dc.identifier.issn0021-9991-
dc.identifier.urihttp://hdl.handle.net/10722/286994-
dc.description.abstract© 2019 Elsevier Inc. In this paper, we proposed two new types of edge multiscale methods motivated by [14] to solve Partial Differential Equations (PDEs) with high-contrast heterogeneous coefficients: Edge Spectral Multiscale Finite Element Method (ESMsFEM) and Wavelet-based Edge Multiscale Finite Element Method (WEMsFEM). Their convergence rates for elliptic problems with high-contrast heterogeneous coefficients are demonstrated in terms of the coarse mesh size H, the number of spectral basis functions and the level of the wavelet space ℓ, which are verified by extensive numerical tests.-
dc.languageeng-
dc.relation.ispartofJournal of Computational Physics-
dc.subjectWavelets-
dc.subjectEdge-
dc.subjectHeterogeneous-
dc.subjectHigh-contrast-
dc.subjectMultiscale-
dc.subjectSteklov eigenvalue-
dc.titleEdge multiscale methods for elliptic problems with heterogeneous coefficients-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/j.jcp.2019.06.006-
dc.identifier.scopuseid_2-s2.0-85068562613-
dc.identifier.volume396-
dc.identifier.spage228-
dc.identifier.epage242-
dc.identifier.eissn1090-2716-
dc.identifier.isiWOS:000481732600012-
dc.identifier.issnl0021-9991-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats