File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.actamat.2019.05.043
- Scopus: eid_2-s2.0-85067952588
- WOS: WOS:000474501300012
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Super-high-strength and formable medium Mn steel manufactured by warm rolling process
Title | Super-high-strength and formable medium Mn steel manufactured by warm rolling process |
---|---|
Authors | |
Keywords | Medium Mn steels Recrystallization Vanadium carbides Transformation induced plasticity Twinning induced plasticity |
Issue Date | 2019 |
Publisher | Pergamon. The Journal's web site is located at http://www.elsevier.com/locate/actamat |
Citation | Acta Materialia, 2019, v. 174, p. 131-141 How to Cite? |
Abstract | In this paper, we demonstrate the design and manufacture of super-high strength medium Mn steel with good ductility, via the combination of warm rolling and V alloying. This new strategy could produce not only the extensive precipitation of fine VC particles in both ferrite and austenite but also the bimodal size distribution of retained austenite (RA) grains. A substantial increase of yield strength up to 650 MPa was achieved after the intercritical annealing of this V-alloyed medium Mn steel without deteriorating ductility; whereas the calculated precipitation strengthening using the classical Ashby–Orowan theory is no more than 400 MPa. Quantifying possible strengthening mechanisms revealed that dislocation strengthening should make an additional contribution because recovery in austenite could be strongly retarded by the nanosized precipitates. In this V-alloyed steel, the coarse RA grains firstly transformed to martensite during yielding at the much higher stress threshold, followed by a significant work hardening due to dislocations multiplication, twinning-induced-plasticity (TWIP) and transformation-induced-plasticity (TRIP) in the ultrafine RA grains. The best combination of strength and ductility included 1.5 GPa ultimate tensile strength and 28% total elongation. This was achieved due to the sustainable TRIP and TWIP effects in the later straining stage resulting from the ultrafine austenite grains, the latter were reversely transformed from the recrystallized ferrite grains. |
Persistent Identifier | http://hdl.handle.net/10722/289753 |
ISSN | 2023 Impact Factor: 8.3 2023 SCImago Journal Rankings: 2.916 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | HU, B | - |
dc.contributor.author | He, B | - |
dc.contributor.author | CHENG, GJ | - |
dc.contributor.author | YEN, HW | - |
dc.contributor.author | Huang, M | - |
dc.contributor.author | LUO, H | - |
dc.date.accessioned | 2020-10-22T08:16:59Z | - |
dc.date.available | 2020-10-22T08:16:59Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Acta Materialia, 2019, v. 174, p. 131-141 | - |
dc.identifier.issn | 1359-6454 | - |
dc.identifier.uri | http://hdl.handle.net/10722/289753 | - |
dc.description.abstract | In this paper, we demonstrate the design and manufacture of super-high strength medium Mn steel with good ductility, via the combination of warm rolling and V alloying. This new strategy could produce not only the extensive precipitation of fine VC particles in both ferrite and austenite but also the bimodal size distribution of retained austenite (RA) grains. A substantial increase of yield strength up to 650 MPa was achieved after the intercritical annealing of this V-alloyed medium Mn steel without deteriorating ductility; whereas the calculated precipitation strengthening using the classical Ashby–Orowan theory is no more than 400 MPa. Quantifying possible strengthening mechanisms revealed that dislocation strengthening should make an additional contribution because recovery in austenite could be strongly retarded by the nanosized precipitates. In this V-alloyed steel, the coarse RA grains firstly transformed to martensite during yielding at the much higher stress threshold, followed by a significant work hardening due to dislocations multiplication, twinning-induced-plasticity (TWIP) and transformation-induced-plasticity (TRIP) in the ultrafine RA grains. The best combination of strength and ductility included 1.5 GPa ultimate tensile strength and 28% total elongation. This was achieved due to the sustainable TRIP and TWIP effects in the later straining stage resulting from the ultrafine austenite grains, the latter were reversely transformed from the recrystallized ferrite grains. | - |
dc.language | eng | - |
dc.publisher | Pergamon. The Journal's web site is located at http://www.elsevier.com/locate/actamat | - |
dc.relation.ispartof | Acta Materialia | - |
dc.subject | Medium Mn steels | - |
dc.subject | Recrystallization | - |
dc.subject | Vanadium carbides | - |
dc.subject | Transformation induced plasticity | - |
dc.subject | Twinning induced plasticity | - |
dc.title | Super-high-strength and formable medium Mn steel manufactured by warm rolling process | - |
dc.type | Article | - |
dc.identifier.email | Huang, M: mxhuang@hku.hk | - |
dc.identifier.authority | Huang, M=rp01418 | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1016/j.actamat.2019.05.043 | - |
dc.identifier.scopus | eid_2-s2.0-85067952588 | - |
dc.identifier.hkuros | 317283 | - |
dc.identifier.volume | 174 | - |
dc.identifier.spage | 131 | - |
dc.identifier.epage | 141 | - |
dc.identifier.isi | WOS:000474501300012 | - |
dc.publisher.place | United Kingdom | - |
dc.identifier.issnl | 1359-6454 | - |