File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Panax notoginseng saponins modulate the gut microbiota to promote thermogenesis and beige adipocyte reconstruction via leptin-mediated AMPKα/STAT3 signaling in diet-induced obesity

TitlePanax notoginseng saponins modulate the gut microbiota to promote thermogenesis and beige adipocyte reconstruction via leptin-mediated AMPKα/STAT3 signaling in diet-induced obesity
Authors
KeywordsGut microbiota
Obesity
White adipocyte
Beige cell
Leptin
Issue Date2020
PublisherIvyspring International Publisher. The Journal's web site is located at http://www.thno.org/
Citation
Theranostics, 2020, v. 10 n. 24, p. 11302-11323 How to Cite?
AbstractBackground: Activation of the thermogenic program in white and brown adipocytes presents a promising avenue for increasing energy expenditure during the treatment of obesity. The endogenous mechanism for promoting thermogenesis in brown adipocytes or browning in white adipocytes has indicated that the gut microbiota is a crucial regulator of the host energy balance. However, whether the effects of the therapeutic intervention-induced modulation of the gut microbiota on adipocyte browning involved the regulation of leptin remains unclear. Method: The adipose features were analyzed by body composition analysis, infrared camera observations, transmission electron microscopy and H&E staining. The gene and protein expression in adipose tissue were detected by qRT-PCR, immunoblotting, immunohistochemistry and immunofluorescence staining. The gut microbiome signature was identified by 16S rRNA gene amplicon sequencing, and both mice with high-fat diet-induced obesity (DIO) and mice with antibiotics-induced microbiome depletion were subjected to fecal microbiota transplantation. Results: Treatment with Panax notoginseng saponins (PNS) shaped the murine gut microbiome by increasing the abundances of Akkermansia muciniphila and Parabacteroides distasonis, and as a result, DIO mice harbored a distal gut microbiota with a significantly increased capacity to reduce host adiposity. The PNS-induced modulation of the gut microbiota in DIO mice could increase brown adipose tissue (BAT) thermogenesis and beige adipocyte reconstruction by activating the leptin-AMPK/STAT3 signaling pathway, which results in the promotion of energy expenditure. Leptin has an essential influence on the anti-obesity effects of PNS. In cases of leptin deficiency, the PNS-induced modulation of the gut microbiota exerts negative effects on thermogenesis and browning in white adipose tissue (WAT), which indicates that PNS fail to reduce obesity in leptin gene-deficient mice. The PNS-induced modulation of the gut microbiota exerted a minimal effect on DIO mice with antibiotic-induced microbiome depletion, which confirmed the correlation between altered gut microbiota and the remodeling of adipose tissues in DIO mice. The direct influence of leptin on browning via the AMPKα/STAT3 signaling pathway in C3H101/2 cells supported our in vivo results that signalling through the leptin-AMPK/STAT3 pathway induced by the PNS-modulated gut microbiota was involved in beige adipocyte reconstruction. Conclusion: Our results revealed that leptin signaling is critical for alterations in microbiota-fat crosstalk and provide promising avenues for therapeutic intervention in the treatment of obesity.
Persistent Identifierhttp://hdl.handle.net/10722/290759
ISSN
2021 Impact Factor: 11.600
2020 SCImago Journal Rankings: 2.689
PubMed Central ID
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorXU, Y-
dc.contributor.authorWang, N-
dc.contributor.authorTan, HY-
dc.contributor.authorLi, S-
dc.contributor.authorZHANG, C-
dc.contributor.authorZhang, Z-
dc.contributor.authorFeng, Y-
dc.date.accessioned2020-11-02T05:46:44Z-
dc.date.available2020-11-02T05:46:44Z-
dc.date.issued2020-
dc.identifier.citationTheranostics, 2020, v. 10 n. 24, p. 11302-11323-
dc.identifier.issn1838-7640-
dc.identifier.urihttp://hdl.handle.net/10722/290759-
dc.description.abstractBackground: Activation of the thermogenic program in white and brown adipocytes presents a promising avenue for increasing energy expenditure during the treatment of obesity. The endogenous mechanism for promoting thermogenesis in brown adipocytes or browning in white adipocytes has indicated that the gut microbiota is a crucial regulator of the host energy balance. However, whether the effects of the therapeutic intervention-induced modulation of the gut microbiota on adipocyte browning involved the regulation of leptin remains unclear. Method: The adipose features were analyzed by body composition analysis, infrared camera observations, transmission electron microscopy and H&E staining. The gene and protein expression in adipose tissue were detected by qRT-PCR, immunoblotting, immunohistochemistry and immunofluorescence staining. The gut microbiome signature was identified by 16S rRNA gene amplicon sequencing, and both mice with high-fat diet-induced obesity (DIO) and mice with antibiotics-induced microbiome depletion were subjected to fecal microbiota transplantation. Results: Treatment with Panax notoginseng saponins (PNS) shaped the murine gut microbiome by increasing the abundances of Akkermansia muciniphila and Parabacteroides distasonis, and as a result, DIO mice harbored a distal gut microbiota with a significantly increased capacity to reduce host adiposity. The PNS-induced modulation of the gut microbiota in DIO mice could increase brown adipose tissue (BAT) thermogenesis and beige adipocyte reconstruction by activating the leptin-AMPK/STAT3 signaling pathway, which results in the promotion of energy expenditure. Leptin has an essential influence on the anti-obesity effects of PNS. In cases of leptin deficiency, the PNS-induced modulation of the gut microbiota exerts negative effects on thermogenesis and browning in white adipose tissue (WAT), which indicates that PNS fail to reduce obesity in leptin gene-deficient mice. The PNS-induced modulation of the gut microbiota exerted a minimal effect on DIO mice with antibiotic-induced microbiome depletion, which confirmed the correlation between altered gut microbiota and the remodeling of adipose tissues in DIO mice. The direct influence of leptin on browning via the AMPKα/STAT3 signaling pathway in C3H101/2 cells supported our in vivo results that signalling through the leptin-AMPK/STAT3 pathway induced by the PNS-modulated gut microbiota was involved in beige adipocyte reconstruction. Conclusion: Our results revealed that leptin signaling is critical for alterations in microbiota-fat crosstalk and provide promising avenues for therapeutic intervention in the treatment of obesity.-
dc.languageeng-
dc.publisherIvyspring International Publisher. The Journal's web site is located at http://www.thno.org/-
dc.relation.ispartofTheranostics-
dc.rightsTheranostics. Copyright © Ivyspring International Publisher.-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subjectGut microbiota-
dc.subjectObesity-
dc.subjectWhite adipocyte-
dc.subjectBeige cell-
dc.subjectLeptin-
dc.titlePanax notoginseng saponins modulate the gut microbiota to promote thermogenesis and beige adipocyte reconstruction via leptin-mediated AMPKα/STAT3 signaling in diet-induced obesity-
dc.typeArticle-
dc.identifier.emailWang, N: ckwang@hku.hk-
dc.identifier.emailTan, HY: hyhtan@hku.hk-
dc.identifier.emailLi, S: lishaha@hku.hk-
dc.identifier.emailZhang, Z: zhangzj@hkucc.hku.hk-
dc.identifier.emailFeng, Y: yfeng@hku.hk-
dc.identifier.authorityWang, N=rp02075-
dc.identifier.authorityZhang, Z=rp01297-
dc.identifier.authorityFeng, Y=rp00466-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.7150/thno.47746-
dc.identifier.pmid33042284-
dc.identifier.pmcidPMC7532683-
dc.identifier.scopuseid_2-s2.0-85092557656-
dc.identifier.hkuros317967-
dc.identifier.volume10-
dc.identifier.issue24-
dc.identifier.spage11302-
dc.identifier.epage11323-
dc.identifier.isiWOS:000573667800003-
dc.publisher.placeAustralia-
dc.identifier.issnl1838-7640-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats