File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1214/19-AAP1539
- Scopus: eid_2-s2.0-85092308270
- WOS: WOS:000557758100005
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: High-dimensional limits of eigenvalue distributions for general Wishart process
Title | High-dimensional limits of eigenvalue distributions for general Wishart process |
---|---|
Authors | |
Keywords | Dyson Brownian motion Eigenvalue distribution Generalized Wishart process High-dimensional limit Squared Bessel particle system |
Issue Date | 2020 |
Publisher | Institute of Mathematical Statistics. |
Citation | Annals of Applied Probability, 2020, v. 30 n. 4, p. 1642-1668 How to Cite? |
Abstract | In this article, we obtain an equation for the high-dimensional limit measure of eigenvalues of generalized Wishart processes, and the results are extended to random particle systems that generalize SDEs of eigenvalues. We also introduce a new set of conditions on the coefficient matrices for the existence and uniqueness of a strong solution for the SDEs of eigenvalues. The equation of the limit measure is further discussed assuming self-similarity on the eigenvalues. |
Persistent Identifier | http://hdl.handle.net/10722/290917 |
ISSN | 2023 Impact Factor: 1.4 2023 SCImago Journal Rankings: 1.620 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | SONG, J | - |
dc.contributor.author | Yao, JJ | - |
dc.contributor.author | YUAN, W | - |
dc.date.accessioned | 2020-11-02T05:48:55Z | - |
dc.date.available | 2020-11-02T05:48:55Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Annals of Applied Probability, 2020, v. 30 n. 4, p. 1642-1668 | - |
dc.identifier.issn | 1050-5164 | - |
dc.identifier.uri | http://hdl.handle.net/10722/290917 | - |
dc.description.abstract | In this article, we obtain an equation for the high-dimensional limit measure of eigenvalues of generalized Wishart processes, and the results are extended to random particle systems that generalize SDEs of eigenvalues. We also introduce a new set of conditions on the coefficient matrices for the existence and uniqueness of a strong solution for the SDEs of eigenvalues. The equation of the limit measure is further discussed assuming self-similarity on the eigenvalues. | - |
dc.language | eng | - |
dc.publisher | Institute of Mathematical Statistics. | - |
dc.relation.ispartof | Annals of Applied Probability | - |
dc.subject | Dyson Brownian motion | - |
dc.subject | Eigenvalue distribution | - |
dc.subject | Generalized Wishart process | - |
dc.subject | High-dimensional limit | - |
dc.subject | Squared Bessel particle system | - |
dc.title | High-dimensional limits of eigenvalue distributions for general Wishart process | - |
dc.type | Article | - |
dc.identifier.email | Yao, JJ: jeffyao@hku.hk | - |
dc.identifier.authority | Yao, JJ=rp01473 | - |
dc.description.nature | published_or_final_version | - |
dc.identifier.doi | 10.1214/19-AAP1539 | - |
dc.identifier.scopus | eid_2-s2.0-85092308270 | - |
dc.identifier.hkuros | 318131 | - |
dc.identifier.volume | 30 | - |
dc.identifier.issue | 4 | - |
dc.identifier.spage | 1642 | - |
dc.identifier.epage | 1668 | - |
dc.identifier.isi | WOS:000557758100005 | - |
dc.publisher.place | United States | - |
dc.identifier.issnl | 1050-5164 | - |