File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: HLA-B-associated transcript 3 (Bat3)/Scythe is essential for p300-mediated acetylation of p53

TitleHLA-B-associated transcript 3 (Bat3)/Scythe is essential for p300-mediated acetylation of p53
Authors
Keywordsp300
p53
Apoptosis
Bat3/Scythe
Gene targeting
Acetylation
Issue Date2007
Citation
Genes and Development, 2007, v. 21, n. 7, p. 848-861 How to Cite?
AbstractIn response to DNA damage, p53 undergoes post-translational modifications (including acetylation) that are critical for its transcriptional activity. However, the mechanism by which p53 acetylation is regulated is still unclear. Here, we describe an essential role for HLA-B-associated transcript 3 (Bat3)/Scythe in controlling the acetylation of p53 required for DNA damage responses. Depletion of Bat3 from human and mouse cells markedly impairs p53-mediated transactivation of its target genes Puma and p21. Although DNA damage-induced phosphorylation, stabilization, and nuclear accumulation of p53 are not significantly affected by Bat3 depletion, p53 acetylation is almost completely abolished. Bat3 forms a complex with p300, and an increased amount of Bat3 enhances the recruitment of p53 to p300 and facilitates subsequent p53 acetylation. In contrast, Bat3-depleted cells show reduced p53-p300 complex formation and decreased p53 acetylation. Furthermore, consistent with our in vitro findings, thymocytes from Bat3-deficient mice exhibit reduced induction of puma and p21, and are resistant to DNA damage-induced apoptosis in vivo. Our data indicate that Bat3 is a novel and essential regulator of p53-mediated responses to genotoxic stress, and that Bat3 controls DNA damage-induced acetylation of p53. © 2007 by Cold Spring Harbor Laboratory Press.
Persistent Identifierhttp://hdl.handle.net/10722/292600
ISSN
2023 Impact Factor: 7.5
2023 SCImago Journal Rankings: 5.015
PubMed Central ID
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorSasaki, Toru-
dc.contributor.authorGan, Eugene C.-
dc.contributor.authorWakeham, Andrew-
dc.contributor.authorKornbluth, Sally-
dc.contributor.authorMak, Tak W.-
dc.contributor.authorOkada, Hitoshi-
dc.date.accessioned2020-11-17T14:56:49Z-
dc.date.available2020-11-17T14:56:49Z-
dc.date.issued2007-
dc.identifier.citationGenes and Development, 2007, v. 21, n. 7, p. 848-861-
dc.identifier.issn0890-9369-
dc.identifier.urihttp://hdl.handle.net/10722/292600-
dc.description.abstractIn response to DNA damage, p53 undergoes post-translational modifications (including acetylation) that are critical for its transcriptional activity. However, the mechanism by which p53 acetylation is regulated is still unclear. Here, we describe an essential role for HLA-B-associated transcript 3 (Bat3)/Scythe in controlling the acetylation of p53 required for DNA damage responses. Depletion of Bat3 from human and mouse cells markedly impairs p53-mediated transactivation of its target genes Puma and p21. Although DNA damage-induced phosphorylation, stabilization, and nuclear accumulation of p53 are not significantly affected by Bat3 depletion, p53 acetylation is almost completely abolished. Bat3 forms a complex with p300, and an increased amount of Bat3 enhances the recruitment of p53 to p300 and facilitates subsequent p53 acetylation. In contrast, Bat3-depleted cells show reduced p53-p300 complex formation and decreased p53 acetylation. Furthermore, consistent with our in vitro findings, thymocytes from Bat3-deficient mice exhibit reduced induction of puma and p21, and are resistant to DNA damage-induced apoptosis in vivo. Our data indicate that Bat3 is a novel and essential regulator of p53-mediated responses to genotoxic stress, and that Bat3 controls DNA damage-induced acetylation of p53. © 2007 by Cold Spring Harbor Laboratory Press.-
dc.languageeng-
dc.relation.ispartofGenes and Development-
dc.subjectp300-
dc.subjectp53-
dc.subjectApoptosis-
dc.subjectBat3/Scythe-
dc.subjectGene targeting-
dc.subjectAcetylation-
dc.titleHLA-B-associated transcript 3 (Bat3)/Scythe is essential for p300-mediated acetylation of p53-
dc.typeArticle-
dc.description.naturelink_to_OA_fulltext-
dc.identifier.doi10.1101/gad.1534107-
dc.identifier.pmid17403783-
dc.identifier.pmcidPMC1838535-
dc.identifier.scopuseid_2-s2.0-34147156192-
dc.identifier.volume21-
dc.identifier.issue7-
dc.identifier.spage848-
dc.identifier.epage861-
dc.identifier.eissn1549-5477-
dc.identifier.isiWOS:000245396900011-
dc.identifier.issnl0890-9369-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats