File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1128/aem.03508-16
- Scopus: eid_2-s2.0-85016546285
- PMID: 28188205
- WOS: WOS:000398771200021
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Metagenomic and Metatranscriptomic Analyses Reveal the Structure and Dynamics of a Dechlorinating Community Containing Dehalococcoides mccartyi and Corrinoid-Providing Microorganisms under Cobalamin-Limited Conditions
Title | Metagenomic and Metatranscriptomic Analyses Reveal the Structure and Dynamics of a Dechlorinating Community Containing Dehalococcoides mccartyi and Corrinoid-Providing Microorganisms under Cobalamin-Limited Conditions |
---|---|
Authors | |
Keywords | Chloroflexi Gene Expression Profiling metagenomics Microbial Consortia Vitamin B 12 |
Issue Date | 2017 |
Publisher | American Society for Microbiology. The Journal's web site is located at http://aem.asm.org/ |
Citation | Applied and Environmental Microbiology, 2017, v. 83 n. 8, p. article no. e03508-16 How to Cite? |
Abstract | The aim of this study is to obtain a systems-level understanding of the interactions between Dehalococcoides and corrinoid-supplying microorganisms by analyzing community structures and functional compositions, activities, and dynamics in trichloroethene (TCE)-dechlorinating enrichments. Metagenomes and metatranscriptomes of the dechlorinating enrichments with and without exogenous cobalamin were compared. Seven putative draft genomes were binned from the metagenomes. At an early stage (2 days), more transcripts of genes in the Veillonellaceae bin-genome were detected in the metatranscriptome of the enrichment without exogenous cobalamin than in the one with the addition of cobalamin. Among these genes, sporulation-related genes exhibited the highest differential expression when cobalamin was not added, suggesting a possible release route of corrinoids from corrinoid producers. Other differentially expressed genes include those involved in energy conservation and nutrient transport (including cobalt transport). The most highly expressed corrinoid de novo biosynthesis pathway was also assigned to the Veillonellaceae bin-genome. Targeted quantitative PCR (qPCR) analyses confirmed higher transcript abundances of those corrinoid biosynthesis genes in the enrichment without exogenous cobalamin than in the enrichment with cobalamin. Furthermore, the corrinoid salvaging and modification pathway of Dehalococcoides was upregulated in response to the cobalamin stress. This study provides important insights into the microbial interactions and roles played by members of dechlorinating communities under cobalamin-limited conditions. IMPORTANCE The key chloroethene-dechlorinating bacterium Dehalococcoides mccartyi is a cobalamin auxotroph, thus acquiring corrinoids from other community members. Therefore, it is important to investigate the microbe-microbe interactions between Dehalococcoides and the corrinoid-providing microorganisms in a community. This study provides systems-level information, i.e., taxonomic and functional compositions and dynamics of the supportive microorganisms in dechlorinating communities under different cobalamin conditions. The findings shed light on the important roles of Veillonellaceae species in the communities compared to other coexisting community members in producing and providing corrinoids for Dehalococcoides species under cobalamin-limited conditions. |
Persistent Identifier | http://hdl.handle.net/10722/293150 |
ISSN | 2023 Impact Factor: 3.9 2023 SCImago Journal Rankings: 1.016 |
PubMed Central ID | |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Men, Y | - |
dc.contributor.author | Yu, K | - |
dc.contributor.author | Bælum, J | - |
dc.contributor.author | Gao, Y | - |
dc.contributor.author | Tremblay, J | - |
dc.contributor.author | Prestat, E | - |
dc.contributor.author | Stenuit, B | - |
dc.contributor.author | Tringe, SG | - |
dc.contributor.author | Jansson, J | - |
dc.contributor.author | Zhang, T | - |
dc.contributor.author | Alvarez-Cohen, L | - |
dc.date.accessioned | 2020-11-23T08:12:32Z | - |
dc.date.available | 2020-11-23T08:12:32Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | Applied and Environmental Microbiology, 2017, v. 83 n. 8, p. article no. e03508-16 | - |
dc.identifier.issn | 0099-2240 | - |
dc.identifier.uri | http://hdl.handle.net/10722/293150 | - |
dc.description.abstract | The aim of this study is to obtain a systems-level understanding of the interactions between Dehalococcoides and corrinoid-supplying microorganisms by analyzing community structures and functional compositions, activities, and dynamics in trichloroethene (TCE)-dechlorinating enrichments. Metagenomes and metatranscriptomes of the dechlorinating enrichments with and without exogenous cobalamin were compared. Seven putative draft genomes were binned from the metagenomes. At an early stage (2 days), more transcripts of genes in the Veillonellaceae bin-genome were detected in the metatranscriptome of the enrichment without exogenous cobalamin than in the one with the addition of cobalamin. Among these genes, sporulation-related genes exhibited the highest differential expression when cobalamin was not added, suggesting a possible release route of corrinoids from corrinoid producers. Other differentially expressed genes include those involved in energy conservation and nutrient transport (including cobalt transport). The most highly expressed corrinoid de novo biosynthesis pathway was also assigned to the Veillonellaceae bin-genome. Targeted quantitative PCR (qPCR) analyses confirmed higher transcript abundances of those corrinoid biosynthesis genes in the enrichment without exogenous cobalamin than in the enrichment with cobalamin. Furthermore, the corrinoid salvaging and modification pathway of Dehalococcoides was upregulated in response to the cobalamin stress. This study provides important insights into the microbial interactions and roles played by members of dechlorinating communities under cobalamin-limited conditions. IMPORTANCE The key chloroethene-dechlorinating bacterium Dehalococcoides mccartyi is a cobalamin auxotroph, thus acquiring corrinoids from other community members. Therefore, it is important to investigate the microbe-microbe interactions between Dehalococcoides and the corrinoid-providing microorganisms in a community. This study provides systems-level information, i.e., taxonomic and functional compositions and dynamics of the supportive microorganisms in dechlorinating communities under different cobalamin conditions. The findings shed light on the important roles of Veillonellaceae species in the communities compared to other coexisting community members in producing and providing corrinoids for Dehalococcoides species under cobalamin-limited conditions. | - |
dc.language | eng | - |
dc.publisher | American Society for Microbiology. The Journal's web site is located at http://aem.asm.org/ | - |
dc.relation.ispartof | Applied and Environmental Microbiology | - |
dc.rights | Applied and Environmental Microbiology. Copyright © American Society for Microbiology. | - |
dc.subject | Chloroflexi | - |
dc.subject | Gene Expression Profiling | - |
dc.subject | metagenomics | - |
dc.subject | Microbial Consortia | - |
dc.subject | Vitamin B 12 | - |
dc.title | Metagenomic and Metatranscriptomic Analyses Reveal the Structure and Dynamics of a Dechlorinating Community Containing Dehalococcoides mccartyi and Corrinoid-Providing Microorganisms under Cobalamin-Limited Conditions | - |
dc.type | Article | - |
dc.identifier.email | Zhang, T: zhangt@hkucc.hku.hk | - |
dc.identifier.authority | Zhang, T=rp00211 | - |
dc.description.nature | link_to_OA_fulltext | - |
dc.identifier.doi | 10.1128/aem.03508-16 | - |
dc.identifier.pmid | 28188205 | - |
dc.identifier.pmcid | PMC5377501 | - |
dc.identifier.scopus | eid_2-s2.0-85016546285 | - |
dc.identifier.hkuros | 319373 | - |
dc.identifier.volume | 83 | - |
dc.identifier.issue | 8 | - |
dc.identifier.spage | article no. e03508 | - |
dc.identifier.epage | 16 | - |
dc.identifier.isi | WOS:000398771200021 | - |
dc.publisher.place | United States | - |
dc.identifier.issnl | 0099-2240 | - |