File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery

TitleComparison and improvement of methods for identifying waterbodies in remotely sensed imagery
Authors
Issue Date2012
Citation
International Journal of Remote Sensing, 2012, v. 33, n. 21, p. 6854-6875 How to Cite?
AbstractThis article first examines three existing methods of delineating open water features, i.e. the normalized difference water index (NDWI), the modified normalized difference water index (MNDWI) and a method combining the near-infrared (NIR) band and the maximum likelihood classification. We then propose two new methods for the fast extraction of water features in remotely sensed imagery. Our first method is a pixel-based procedure that utilizes indices and band values. Based on their characteristic spectral reflectance curves, waterbodies are grouped into three types - clear, green and turbid. We found that the MNDWI is best suited for identifying clear water. Green water has its maximum reflectance in Landsat Thematic Mapper (TM) band 4 (NIR band), whereas turbid water has its maximum reflectance in TM band 5 (mid-infrared band). Our second method integrates our pixel-based classification with object-based image segmentation. Two Landsat scenes in Shaanxi Province, China, were used as the primary data source. Digital elevation models (DEMs) and their derived slope maps were used as ancillary information. To evaluate the performance of the proposed methods, extraction results of the three existing methods and our two new methods were compared and assessed. A manual interpretation was made and used as reference data. Results suggest that our methods, which consider the diversity of waterbodies, achieved better accuracy. Our pixel-based method achieved a producer's accuracy of 92%, user's accuracy of 90% and kappa statistics of 0.91. Our integrated method produced a higher producer's accuracy (95%), but a lower user's accuracy (72%) and kappa statistics (0.72), compared with the pixel-based method. The advantages and limitations of the proposed methods are discussed. © 2012 Copyright Taylor and Francis Group, LLC.
Persistent Identifierhttp://hdl.handle.net/10722/296701
ISSN
2023 Impact Factor: 3.0
2023 SCImago Journal Rankings: 0.776
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorSun, Fangdi-
dc.contributor.authorSun, Wanxiao-
dc.contributor.authorChen, Jin-
dc.contributor.authorGong, Peng-
dc.date.accessioned2021-02-25T15:16:29Z-
dc.date.available2021-02-25T15:16:29Z-
dc.date.issued2012-
dc.identifier.citationInternational Journal of Remote Sensing, 2012, v. 33, n. 21, p. 6854-6875-
dc.identifier.issn0143-1161-
dc.identifier.urihttp://hdl.handle.net/10722/296701-
dc.description.abstractThis article first examines three existing methods of delineating open water features, i.e. the normalized difference water index (NDWI), the modified normalized difference water index (MNDWI) and a method combining the near-infrared (NIR) band and the maximum likelihood classification. We then propose two new methods for the fast extraction of water features in remotely sensed imagery. Our first method is a pixel-based procedure that utilizes indices and band values. Based on their characteristic spectral reflectance curves, waterbodies are grouped into three types - clear, green and turbid. We found that the MNDWI is best suited for identifying clear water. Green water has its maximum reflectance in Landsat Thematic Mapper (TM) band 4 (NIR band), whereas turbid water has its maximum reflectance in TM band 5 (mid-infrared band). Our second method integrates our pixel-based classification with object-based image segmentation. Two Landsat scenes in Shaanxi Province, China, were used as the primary data source. Digital elevation models (DEMs) and their derived slope maps were used as ancillary information. To evaluate the performance of the proposed methods, extraction results of the three existing methods and our two new methods were compared and assessed. A manual interpretation was made and used as reference data. Results suggest that our methods, which consider the diversity of waterbodies, achieved better accuracy. Our pixel-based method achieved a producer's accuracy of 92%, user's accuracy of 90% and kappa statistics of 0.91. Our integrated method produced a higher producer's accuracy (95%), but a lower user's accuracy (72%) and kappa statistics (0.72), compared with the pixel-based method. The advantages and limitations of the proposed methods are discussed. © 2012 Copyright Taylor and Francis Group, LLC.-
dc.languageeng-
dc.relation.ispartofInternational Journal of Remote Sensing-
dc.titleComparison and improvement of methods for identifying waterbodies in remotely sensed imagery-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1080/01431161.2012.692829-
dc.identifier.scopuseid_2-s2.0-84863574914-
dc.identifier.volume33-
dc.identifier.issue21-
dc.identifier.spage6854-
dc.identifier.epage6875-
dc.identifier.eissn1366-5901-
dc.identifier.isiWOS:000305539700013-
dc.identifier.issnl0143-1161-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats