File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1007/s11434-016-1148-1
- Scopus: eid_2-s2.0-84980454557
- WOS: WOS:000387414100004
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: A cellular automata downscaling based 1 km global land use datasets (2010–2100)
Title | A cellular automata downscaling based 1 km global land use datasets (2010–2100) |
---|---|
Authors | |
Keywords | Spatial downscaling LULC modeling RCP scenarios Urban expansion |
Issue Date | 2016 |
Citation | Science Bulletin, 2016, v. 61, n. 21, p. 1651-1661 How to Cite? |
Abstract | © 2016, Science China Press and Springer-Verlag Berlin Heidelberg. Global climate and environmental change studies require detailed land-use and land-cover (LULC) information about the past, present, and future. In this paper, we discuss a methodology for downscaling coarse-resolution (i.e., half-degree) future land use scenarios to finer (i.e., 1 km) resolutions at the global scale using a grid-based spatially explicit cellular automata (CA) model. We account for spatial heterogeneity from topography, climate, soils, and socioeconomic variables. The model uses a global 30 m land cover map (2010) as the base input, a variety of biogeographic and socioeconomic variables, and an empirical analysis to downscale coarse-resolution land use information (specifically urban, crop and pasture). The output of this model offers the most current and finest-scale future LULC dynamics from 2010 to 2100 (with four representative concentration pathway (RCP) scenarios—RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) at a 1 km resolution within a globally consistent framework. The data are freely available for download, and will enable researchers to study the impacts of LULC change at the local scale. |
Persistent Identifier | http://hdl.handle.net/10722/296786 |
ISSN | 2023 Impact Factor: 18.8 2023 SCImago Journal Rankings: 2.807 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Li, Xuecao | - |
dc.contributor.author | Yu, Le | - |
dc.contributor.author | Sohl, Terry | - |
dc.contributor.author | Clinton, Nicholas | - |
dc.contributor.author | Li, Wenyu | - |
dc.contributor.author | Zhu, Zhiliang | - |
dc.contributor.author | Liu, Xiaoping | - |
dc.contributor.author | Gong, Peng | - |
dc.date.accessioned | 2021-02-25T15:16:40Z | - |
dc.date.available | 2021-02-25T15:16:40Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | Science Bulletin, 2016, v. 61, n. 21, p. 1651-1661 | - |
dc.identifier.issn | 2095-9273 | - |
dc.identifier.uri | http://hdl.handle.net/10722/296786 | - |
dc.description.abstract | © 2016, Science China Press and Springer-Verlag Berlin Heidelberg. Global climate and environmental change studies require detailed land-use and land-cover (LULC) information about the past, present, and future. In this paper, we discuss a methodology for downscaling coarse-resolution (i.e., half-degree) future land use scenarios to finer (i.e., 1 km) resolutions at the global scale using a grid-based spatially explicit cellular automata (CA) model. We account for spatial heterogeneity from topography, climate, soils, and socioeconomic variables. The model uses a global 30 m land cover map (2010) as the base input, a variety of biogeographic and socioeconomic variables, and an empirical analysis to downscale coarse-resolution land use information (specifically urban, crop and pasture). The output of this model offers the most current and finest-scale future LULC dynamics from 2010 to 2100 (with four representative concentration pathway (RCP) scenarios—RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) at a 1 km resolution within a globally consistent framework. The data are freely available for download, and will enable researchers to study the impacts of LULC change at the local scale. | - |
dc.language | eng | - |
dc.relation.ispartof | Science Bulletin | - |
dc.subject | Spatial downscaling | - |
dc.subject | LULC modeling | - |
dc.subject | RCP scenarios | - |
dc.subject | Urban expansion | - |
dc.title | A cellular automata downscaling based 1 km global land use datasets (2010–2100) | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1007/s11434-016-1148-1 | - |
dc.identifier.scopus | eid_2-s2.0-84980454557 | - |
dc.identifier.volume | 61 | - |
dc.identifier.issue | 21 | - |
dc.identifier.spage | 1651 | - |
dc.identifier.epage | 1661 | - |
dc.identifier.eissn | 2095-9281 | - |
dc.identifier.isi | WOS:000387414100004 | - |
dc.identifier.issnl | 2095-9273 | - |