File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Maximality of galois actions for abelian and hyper-kähler varieties

TitleMaximality of galois actions for abelian and hyper-kähler varieties
Authors
Issue Date2020
Citation
Duke Mathematical Journal, 2020, v. 169, n. 6, p. 1163-1207 How to Cite?
Abstract© 2020 Duke University Press. All rights reserved. Let {ρℓ} be the system of ℓ-adic representations arising from the i th ℓ-adic cohomology of a proper smooth variety X defined over a number field K. Let Γℓand Gℓbe, respectively, the image and the algebraic monodromy group of ρℓ. We prove that the reductive quotient of Gοℓis unramified over every degree 12 totally ramified extension of ℚℓfor all sufficiently large ℓ. We give a necessary and sufficient condition (∗) on {ρℓ}ℓsuch that, for all sufficiently large ℓ, the subgroup Γℓis in some sense maximal compact in Gℓ(ℚℓ). This is used to deduce Galois maximality results for ℓ-adic representations arising from abelian varieties (for all i) and hyper-Kähler varieties (i=2) defined over finitely generated fields over ℚ.
Persistent Identifierhttp://hdl.handle.net/10722/297366
ISSN
2023 Impact Factor: 2.3
2023 SCImago Journal Rankings: 3.774
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorHui, Chun Yin-
dc.contributor.authorLarsen, Michael-
dc.date.accessioned2021-03-15T07:33:37Z-
dc.date.available2021-03-15T07:33:37Z-
dc.date.issued2020-
dc.identifier.citationDuke Mathematical Journal, 2020, v. 169, n. 6, p. 1163-1207-
dc.identifier.issn0012-7094-
dc.identifier.urihttp://hdl.handle.net/10722/297366-
dc.description.abstract© 2020 Duke University Press. All rights reserved. Let {ρℓ} be the system of ℓ-adic representations arising from the i th ℓ-adic cohomology of a proper smooth variety X defined over a number field K. Let Γℓand Gℓbe, respectively, the image and the algebraic monodromy group of ρℓ. We prove that the reductive quotient of Gοℓis unramified over every degree 12 totally ramified extension of ℚℓfor all sufficiently large ℓ. We give a necessary and sufficient condition (∗) on {ρℓ}ℓsuch that, for all sufficiently large ℓ, the subgroup Γℓis in some sense maximal compact in Gℓ(ℚℓ). This is used to deduce Galois maximality results for ℓ-adic representations arising from abelian varieties (for all i) and hyper-Kähler varieties (i=2) defined over finitely generated fields over ℚ.-
dc.languageeng-
dc.relation.ispartofDuke Mathematical Journal-
dc.titleMaximality of galois actions for abelian and hyper-kähler varieties-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1215/00127094-2019-0054-
dc.identifier.scopuseid_2-s2.0-85091603161-
dc.identifier.volume169-
dc.identifier.issue6-
dc.identifier.spage1163-
dc.identifier.epage1207-
dc.identifier.isiWOS:000527358800004-
dc.identifier.issnl0012-7094-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats