File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Type-I band alignment at MoS2/In0.15Al0.85N lattice matched heterojunction and realization of MoS2 quantum well

TitleType-I band alignment at MoS<inf>2</inf>/In<inf>0.15</inf>Al<inf>0.85</inf>N lattice matched heterojunction and realization of MoS<inf>2</inf> quantum well
Authors
Issue Date2017
Citation
Applied Physics Letters, 2017, v. 111, n. 9, article no. 092104 How to Cite?
AbstractThe valence and conduction band offsets (VBO and CBO) at the semiconductor heterojunction are crucial parameters to design the active region of contemporary electronic and optoelectronic devices. In this report, to study the band alignment parameters at the In Al N/MoS lattice matched heterointerface, large area MoS single layers are chemical vapor deposited on molecular beam epitaxial grown In Al N films and vice versa. We grew InAlN having an in-plane lattice parameter closely matching with that of MoS . We confirm that the grown MoS is a single layer from optical and structural analyses using micro-Raman spectroscopy and scanning transmission electron microscopy. The band offset parameters VBO and CBO at the In Al N/MoS heterojunction are determined to be 2.08 ± 0.15 and 0.60 ± 0.15 eV, respectively, with type-I band alignment using high-resolution x-ray photoelectron spectroscopy in conjunction with ultraviolet photoelectron spectroscopy. Furthermore, we design a MoS quantum well structure by growing an In Al N layer on MoS /In Al N type-I heterostructure. By reducing the nitrogen plasma power and flow rate for the overgrown In Al N layers, we achieve unaltered structural properties and a reasonable preservation of photoluminescence intensity with a peak width of 70 meV for MoS quantum well (QW). The investigation provides a pathway towards realizing large area, air-stable, lattice matched, and eventual high efficiency In Al N/MoS /In Al N QW-based light emitting devices. 0.15 0.85 2 2 0.15 0.85 2 2 0.15 0.85 2 2 0.15 0.85 2 0.15 0.85 0.15 0.85 2 0.15 0.85 2 0.15 0.85
Persistent Identifierhttp://hdl.handle.net/10722/298227
ISSN
2023 Impact Factor: 3.5
2023 SCImago Journal Rankings: 0.976
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorTangi, Malleswararao-
dc.contributor.authorMishra, Pawan-
dc.contributor.authorLi, Ming Yang-
dc.contributor.authorShakfa, Mohammad Khaled-
dc.contributor.authorAnjum, Dalaver H.-
dc.contributor.authorHedhili, Mohamed Nejib-
dc.contributor.authorNg, Tien Khee-
dc.contributor.authorLi, Lain Jong-
dc.contributor.authorOoi, Boon S.-
dc.date.accessioned2021-04-08T03:07:57Z-
dc.date.available2021-04-08T03:07:57Z-
dc.date.issued2017-
dc.identifier.citationApplied Physics Letters, 2017, v. 111, n. 9, article no. 092104-
dc.identifier.issn0003-6951-
dc.identifier.urihttp://hdl.handle.net/10722/298227-
dc.description.abstractThe valence and conduction band offsets (VBO and CBO) at the semiconductor heterojunction are crucial parameters to design the active region of contemporary electronic and optoelectronic devices. In this report, to study the band alignment parameters at the In Al N/MoS lattice matched heterointerface, large area MoS single layers are chemical vapor deposited on molecular beam epitaxial grown In Al N films and vice versa. We grew InAlN having an in-plane lattice parameter closely matching with that of MoS . We confirm that the grown MoS is a single layer from optical and structural analyses using micro-Raman spectroscopy and scanning transmission electron microscopy. The band offset parameters VBO and CBO at the In Al N/MoS heterojunction are determined to be 2.08 ± 0.15 and 0.60 ± 0.15 eV, respectively, with type-I band alignment using high-resolution x-ray photoelectron spectroscopy in conjunction with ultraviolet photoelectron spectroscopy. Furthermore, we design a MoS quantum well structure by growing an In Al N layer on MoS /In Al N type-I heterostructure. By reducing the nitrogen plasma power and flow rate for the overgrown In Al N layers, we achieve unaltered structural properties and a reasonable preservation of photoluminescence intensity with a peak width of 70 meV for MoS quantum well (QW). The investigation provides a pathway towards realizing large area, air-stable, lattice matched, and eventual high efficiency In Al N/MoS /In Al N QW-based light emitting devices. 0.15 0.85 2 2 0.15 0.85 2 2 0.15 0.85 2 2 0.15 0.85 2 0.15 0.85 0.15 0.85 2 0.15 0.85 2 0.15 0.85-
dc.languageeng-
dc.relation.ispartofApplied Physics Letters-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.titleType-I band alignment at MoS<inf>2</inf>/In<inf>0.15</inf>Al<inf>0.85</inf>N lattice matched heterojunction and realization of MoS<inf>2</inf> quantum well-
dc.typeArticle-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1063/1.4995976-
dc.identifier.scopuseid_2-s2.0-85028769913-
dc.identifier.volume111-
dc.identifier.issue9-
dc.identifier.spagearticle no. 092104-
dc.identifier.epagearticle no. 092104-
dc.identifier.isiWOS:000408751500016-
dc.identifier.issnl0003-6951-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats