File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: One-Step Vapor-Phase Synthesis and Quantum-Confined Exciton in Single-Crystal Platelets of Hybrid Halide Perovskites

TitleOne-Step Vapor-Phase Synthesis and Quantum-Confined Exciton in Single-Crystal Platelets of Hybrid Halide Perovskites
Authors
Issue Date2019
Citation
Journal of Physical Chemistry Letters, 2019, v. 10, n. 10, p. 2363-2371 How to Cite?
AbstractTo investigate the quantum confinement effect on excitons in hybrid perovskites, single-crystal platelets of CH NH PbBr are grown on mica substrates using one-step chemical vapor deposition. Photoluminescence measurements reveal a monotonous blue shift with a decreasing platelet thickness, which is accompanied by a significant increase in exciton binding energy from approximately 70 to 150 meV. Those phenomena can be attributed to the one-dimensional (1D) quantum confinement effect in the two-dimensional platelets. Furthermore, we develop an analytical model to quantitatively elucidate the 1D confinement effect in such quantum wells with asymmetric barriers. Our analysis indicates that the exciton Bohr radius of single-crystal CH NH PbBr is compressed from 4.0 nm for the thick (26.2 nm) platelets to 2.2 nm for the thin (5.9 nm) ones. The critical understanding of the 1D quantum confinement effect and the development of a general model to elucidate the exciton properties of asymmetric semiconductor quantum wells pave the way toward developing high-performance optoelectronic heterostructures. 3 3 3 3 3 3
Persistent Identifierhttp://hdl.handle.net/10722/298307
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorLiu, Zhixiong-
dc.contributor.authorLi, Yunhai-
dc.contributor.authorGuan, Xinwei-
dc.contributor.authorMi, Yang-
dc.contributor.authorAl-Hussain, Abdulrahman-
dc.contributor.authorHa, Son Tung-
dc.contributor.authorChiu, Ming Hui-
dc.contributor.authorMa, Chun-
dc.contributor.authorAmer, Moh R.-
dc.contributor.authorLi, Lain Jong-
dc.contributor.authorLiu, Jie-
dc.contributor.authorXiong, Qihua-
dc.contributor.authorWang, Jinlan-
dc.contributor.authorLiu, Xinfeng-
dc.contributor.authorWu, Tom-
dc.date.accessioned2021-04-08T03:08:07Z-
dc.date.available2021-04-08T03:08:07Z-
dc.date.issued2019-
dc.identifier.citationJournal of Physical Chemistry Letters, 2019, v. 10, n. 10, p. 2363-2371-
dc.identifier.urihttp://hdl.handle.net/10722/298307-
dc.description.abstractTo investigate the quantum confinement effect on excitons in hybrid perovskites, single-crystal platelets of CH NH PbBr are grown on mica substrates using one-step chemical vapor deposition. Photoluminescence measurements reveal a monotonous blue shift with a decreasing platelet thickness, which is accompanied by a significant increase in exciton binding energy from approximately 70 to 150 meV. Those phenomena can be attributed to the one-dimensional (1D) quantum confinement effect in the two-dimensional platelets. Furthermore, we develop an analytical model to quantitatively elucidate the 1D confinement effect in such quantum wells with asymmetric barriers. Our analysis indicates that the exciton Bohr radius of single-crystal CH NH PbBr is compressed from 4.0 nm for the thick (26.2 nm) platelets to 2.2 nm for the thin (5.9 nm) ones. The critical understanding of the 1D quantum confinement effect and the development of a general model to elucidate the exciton properties of asymmetric semiconductor quantum wells pave the way toward developing high-performance optoelectronic heterostructures. 3 3 3 3 3 3-
dc.languageeng-
dc.relation.ispartofJournal of Physical Chemistry Letters-
dc.titleOne-Step Vapor-Phase Synthesis and Quantum-Confined Exciton in Single-Crystal Platelets of Hybrid Halide Perovskites-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1021/acs.jpclett.9b00777-
dc.identifier.pmid31020840-
dc.identifier.scopuseid_2-s2.0-85065538347-
dc.identifier.volume10-
dc.identifier.issue10-
dc.identifier.spage2363-
dc.identifier.epage2371-
dc.identifier.eissn1948-7185-
dc.identifier.isiWOS:000468379300009-
dc.identifier.issnl1948-7185-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats