File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Layer Rotation-Angle-Dependent Excitonic Absorption in Van Der Waals Heterostructures Revealed by Electron Energy Loss Spectroscopy

TitleLayer Rotation-Angle-Dependent Excitonic Absorption in Van Der Waals Heterostructures Revealed by Electron Energy Loss Spectroscopy
Authors
Keywordselectron energy loss spectroscopy
interlayer excitons
Van Der Waals heterostructure
scanning transmission electron microscopy
ultrafast charge transfer
Issue Date2019
Citation
ACS Nano, 2019, v. 13, n. 8, p. 9541-9550 How to Cite?
AbstractHeterostructures comprising Van Der Waals (vdW) stacked transition metal dichalcogenide (TMDC) monolayers are a fascinating class of two-dimensional (2D) materials. The presence of interlayer excitons, where the electron and the hole remain spatially separated in the two layers due to ultrafast charge transfer, is an intriguing feature of these heterostructures. The optoelectronic functionality of 2D heterostructure devices is critically dependent on the relative rotation angle of the layers. However, the role of the relative rotation angle of the constituent layers on intralayer absorption is not clear yet. Here, we investigate MoS /WSe vdW heterostructures using monochromated low-loss electron energy loss (EEL) spectroscopy combined with aberration-corrected scanning transmission electron microscopy and report that momentum conservation is a critical factor in the intralayer absorption of TMDC vdW heterostructures. The evolution of the intralayer excitonic low-loss EEL spectroscopy peak broadenings as a function of the rotation angle reveals that the interlayer charge transfer rate can be about an order of magnitude faster in the aligned (or anti-aligned) case than in the misaligned cases. These results provide a deeper insight into the role of momentum conservation, one of the fundamental principles governing charge transfer dynamics in 2D vdW heterostructures. 2 2
Persistent Identifierhttp://hdl.handle.net/10722/298316
ISSN
2021 Impact Factor: 18.027
2020 SCImago Journal Rankings: 5.554
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorGogoi, Pranjal Kumar-
dc.contributor.authorLin, Yung Chang-
dc.contributor.authorSenga, Ryosuke-
dc.contributor.authorKomsa, Hannu Pekka-
dc.contributor.authorWong, Swee Liang-
dc.contributor.authorChi, Dongzhi-
dc.contributor.authorKrasheninnikov, Arkady V.-
dc.contributor.authorLi, Lain Jong-
dc.contributor.authorBreese, Mark B.H.-
dc.contributor.authorPennycook, Stephen J.-
dc.contributor.authorWee, Andrew T.S.-
dc.contributor.authorSuenaga, Kazu-
dc.date.accessioned2021-04-08T03:08:08Z-
dc.date.available2021-04-08T03:08:08Z-
dc.date.issued2019-
dc.identifier.citationACS Nano, 2019, v. 13, n. 8, p. 9541-9550-
dc.identifier.issn1936-0851-
dc.identifier.urihttp://hdl.handle.net/10722/298316-
dc.description.abstractHeterostructures comprising Van Der Waals (vdW) stacked transition metal dichalcogenide (TMDC) monolayers are a fascinating class of two-dimensional (2D) materials. The presence of interlayer excitons, where the electron and the hole remain spatially separated in the two layers due to ultrafast charge transfer, is an intriguing feature of these heterostructures. The optoelectronic functionality of 2D heterostructure devices is critically dependent on the relative rotation angle of the layers. However, the role of the relative rotation angle of the constituent layers on intralayer absorption is not clear yet. Here, we investigate MoS /WSe vdW heterostructures using monochromated low-loss electron energy loss (EEL) spectroscopy combined with aberration-corrected scanning transmission electron microscopy and report that momentum conservation is a critical factor in the intralayer absorption of TMDC vdW heterostructures. The evolution of the intralayer excitonic low-loss EEL spectroscopy peak broadenings as a function of the rotation angle reveals that the interlayer charge transfer rate can be about an order of magnitude faster in the aligned (or anti-aligned) case than in the misaligned cases. These results provide a deeper insight into the role of momentum conservation, one of the fundamental principles governing charge transfer dynamics in 2D vdW heterostructures. 2 2-
dc.languageeng-
dc.relation.ispartofACS Nano-
dc.subjectelectron energy loss spectroscopy-
dc.subjectinterlayer excitons-
dc.subjectVan Der Waals heterostructure-
dc.subjectscanning transmission electron microscopy-
dc.subjectultrafast charge transfer-
dc.titleLayer Rotation-Angle-Dependent Excitonic Absorption in Van Der Waals Heterostructures Revealed by Electron Energy Loss Spectroscopy-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1021/acsnano.9b04530-
dc.identifier.pmid31345026-
dc.identifier.scopuseid_2-s2.0-85070652231-
dc.identifier.volume13-
dc.identifier.issue8-
dc.identifier.spage9541-
dc.identifier.epage9550-
dc.identifier.eissn1936-086X-
dc.identifier.isiWOS:000484077800105-
dc.identifier.issnl1936-0851-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats