File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Sub-0.5 nm interfacial dielectric enables superior electrostatics: 65 mV/dec top-gated carbon nanotube FETs at 15 nm Gate Length

TitleSub-0.5 nm interfacial dielectric enables superior electrostatics: 65 mV/dec top-gated carbon nanotube FETs at 15 nm Gate Length
Authors
Issue Date2020
Citation
2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 12-18 December 2020. In IEEE International Electron Devices Meeting (IEDM), 2020 How to Cite?
AbstractTo realize superior electrostatic control, a gate oxide bilayer for carbon nanotubes (CNT) is employed consisting of a 0.35 nm interfacial dielectric (k=7.8) and 2.5 nm high-k ALD dielectric (k=24). Using experimentally measured dielectric constants on sp2 carbon and minimum oxide thickness on CNT, a COX on CNT of 2.94×10-10 F/m is calculated for top-gate geometry. Gate leakage sub-1 pA/CNT is measured at 0.7V, better than the sub-5 nm node technology target. Top-gated carbon nanotube field effect transistors in this paper have 65 mV/dec subthreshold slope and DIBL as low as 20 mV/V at 15 nm gate length. Negligible hysteresis and no degradation in drive current from the top-gate process is observed. TCAD modeling predicts this approach will enable 68 mV/dec for top-gate CNFET with 10 nm LG, 1 nm CNT diameter and 250 CNT/μm, revealing a path to energy and performance gains from a CNT transistor technology.
Persistent Identifierhttp://hdl.handle.net/10722/298383
ISSN
2023 SCImago Journal Rankings: 1.047
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorPitner, G.-
dc.contributor.authorZhang, Z.-
dc.contributor.authorLin, Q.-
dc.contributor.authorSu, S. K.-
dc.contributor.authorGilardi, C.-
dc.contributor.authorKuo, C.-
dc.contributor.authorKashyap, H.-
dc.contributor.authorWeiss, T.-
dc.contributor.authorYu, Z.-
dc.contributor.authorChao, T. A.-
dc.contributor.authorLi, L. J.-
dc.contributor.authorMitra, S.-
dc.contributor.authorWong, H. S.P.-
dc.contributor.authorCai, J.-
dc.contributor.authorKummel, A.-
dc.contributor.authorBandaru, P.-
dc.contributor.authorPasslack, M.-
dc.date.accessioned2021-04-08T03:08:18Z-
dc.date.available2021-04-08T03:08:18Z-
dc.date.issued2020-
dc.identifier.citation2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 12-18 December 2020. In IEEE International Electron Devices Meeting (IEDM), 2020-
dc.identifier.issn0163-1918-
dc.identifier.urihttp://hdl.handle.net/10722/298383-
dc.description.abstractTo realize superior electrostatic control, a gate oxide bilayer for carbon nanotubes (CNT) is employed consisting of a 0.35 nm interfacial dielectric (k=7.8) and 2.5 nm high-k ALD dielectric (k=24). Using experimentally measured dielectric constants on sp2 carbon and minimum oxide thickness on CNT, a COX on CNT of 2.94×10-10 F/m is calculated for top-gate geometry. Gate leakage sub-1 pA/CNT is measured at 0.7V, better than the sub-5 nm node technology target. Top-gated carbon nanotube field effect transistors in this paper have 65 mV/dec subthreshold slope and DIBL as low as 20 mV/V at 15 nm gate length. Negligible hysteresis and no degradation in drive current from the top-gate process is observed. TCAD modeling predicts this approach will enable 68 mV/dec for top-gate CNFET with 10 nm LG, 1 nm CNT diameter and 250 CNT/μm, revealing a path to energy and performance gains from a CNT transistor technology.-
dc.languageeng-
dc.relation.ispartofInternational Electron Devices Meeting (IEDM)-
dc.titleSub-0.5 nm interfacial dielectric enables superior electrostatics: 65 mV/dec top-gated carbon nanotube FETs at 15 nm Gate Length-
dc.typeConference_Paper-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1109/IEDM13553.2020.9371899-
dc.identifier.scopuseid_2-s2.0-85102950038-
dc.identifier.isiWOS:000717011600011-
dc.identifier.issnl0163-1918-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats